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ABSTRACT
Fast and accurate pre-routing timing prediction is essential for timing-
driven placement since repetitive routing and static timing analysis
(STA) iterations are expensive and unacceptable. Prior work on timing
prediction aims at estimating net delay and slew, lacking the ability to
model global timing metrics. In this work, we present a timing engine
inspired graph neural network (GNN) to predict arrival time and slack
at timing endpoints. We further leverage edge delays as local auxil-
iary tasks to facilitate model training with increased model performance.
Experimental results on real-world open-source designs demonstrate im-
proved model accuracy and explainability when compared with vanilla
deep GNN models.

1 INTRODUCTION
Fast and accurate timing prediction is essential for timing-driven place-
ment since accurate timing information is available only after rout-
ing. Placement significantly affects the quality of downstream routing
tasks, while it consumes only a fraction of time in the back-end design
flow stage when compared with routing. Since repetitive routing and
static timing analysis (STA) are expensive and unacceptable during the
placement stage, state-of-the-art analytical placers [17, 19] optimize the
half-perimeter wirelength as the surrogate of design quality. Although
advancements have been made to include further routing congestion
and cell density [10, 11] in the optimization objectives, directly tar-
geting routed wirelength, optimization for timing-oriented metrics in
large-scale designs remains challenging without a fast and accurate
pre-routing timing prediction model.

Early works proposed a variety of heuristics and wire load models to
form methods of approximation to consider routing-induced parasitic
effects prior to routing [4, 24]. Recent works have demonstrated great
success in applying machine learning techniques to estimate the effects
of downstream tasks with higher precision, enabling design pruning
and optimization in the early upstream design stages. In [12], the au-
thors propose a deep learning methodology to correct divergence and
improve the correlation of timing results from different timing engines.
The work of [6] uses support vector machines to predict timing failures
of embedded memory during the initial floorplan design, significantly
reducing the design cycle. Barboza et al. [5] develop a random forest
model with extracted placement features to predict routed net delay
and slew, where the overall circuit timing is then obtained through
PERT traversals [7]. Liang et al. [16] propose a machine learning-based
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routing-free crosstalk prediction framework, leveraging neighboring
net information and graph-based learning methods. Similarly, in analog
design, recent works have leveraged deep learning models to predict par-
asitic layout effects and post-layout performance for device sizing [18]
and placement optimization [15].

Recent advances in graph neural networks (GNNs) have demonstrated
superior efficacy in learning graph structures and mining graph infor-
mation [13]. Since circuit netlists can be naturally represented as graphs,
GNNs have gained increased popularity in the electronic design au-
tomation (EDA) community [16, 18, 20, 21, 23, 25, 27]. However, the
performance of GNNs is known to gradually decrease with an increasing
number of layers due to over-smoothing, where repeated graph convolu-
tions make node embeddings indistinguishable [8, 14]. Thus, prior works
in EDA leveraging GNNs can only retrieve local features in learned node
embeddings, and graph layers are seldom stacked beyond more than
4 layers. This makes learning node embedding with global informa-
tion extremely challenging since the limited number of stacked graph
convolution layers severely restricts the receptive field of conventional
GNNs.

This work presents a timing engine inspired graph neural network
model to predict the arrival time and slack value at timing endpoints.
Compared with prior work [5] which only leverages local net features in
predicting the net delay and slew, our GNN model learns global timing
metrics in an end-to-end fashion without additional feature engineering
and invoking STA tools. We further explore recent methods in stack-
ing deep graph convolution (GCN) layers [8] and call attention to the
community that deep GNN architectures suitable for EDA problems are
critical, challenging, yet an underexplored issue. Our method is evalu-
ated on real-world open-source designs [1] with timing data generated
from open-source EDA tools [3]. We highlight our contributions:

• To the best of our knowledge, we are the first to present an
end-to-end graph learning framework for predicting pre-routing
arrival time and slack values at timing endpoints without invoking
additional STA tools.

• Our GNNmodel inspired from path delay calculations reduces the
required GNN receptive field and improves model explainability
and interpretability.

• We further leverage net and cell delay prediction as auxiliary
tasks to facilitate model training, which greatly improves model
performance.

• We explore and compare against a deep GNN model and call the
attention that suitable deep GNN architectures for EDA tasks are
critical yet underexplored.

• Our model evaluated with real-world open-source designs demon-
strates the ability to generalize across designs.

• The predicted results correlate strongly with labeled data while
being magnitudes faster than routing and STA.

• All data and code are open-sourced for reproducibility1.
The rest of this paper is organized as follows. Section 2 provides a brief

overview of prior work, introduces the vanilla deep GCNII model [8],
and generated dataset with open-source designs and tools. Section 3

1https://github.com/TimingPredict/TimingPredict
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details the proposed timing engine inspired GNN model with enhanced
training of auxiliary edge delay prediction tasks. Section 4 presents the
experimental results. Section 5 concludes the paper.

2 PRELIMINARIES AND RELATEDWORK
2.1 Machine Learning for Pre-Routing Timing

Prediction
Our problem setup closely follows the prior work of [5], where given
the circuit placement result, the objective is to estimate post-routing
timing behavior. However, prior work only predicted local delay results
such as net delay and net slew using net-based engineered features
extracted from placement results. Additional calculations are required
through PERT traversals [7] using the machine learning-based net delay
models to obtain the circuit global timing metrics. Thus, careful feature
engineering and additional invocations of STA are required to obtain
accurate arrival time and slack estimations.

In this work, we propose an end-to-end machine learning framework
to predict arrival time and slack values at timing endpoints directly.
By leveraging GNNs, we remove the need for feature engineering and
additional STA analysis.

2.2 Over-smoothing in GCNs and Deep GNNs
Graph neural networks (GNNs) are powerful tools in modeling graph-
structured data with increasing popularity and wide adoption in the
EDA domain. Since circuit netlist can naturally be represented as graphs,
GNNs have been successfully adapted to learning a variety of EDA
tasks, including parasitic [18, 23], crosstalk [16], routed wirelength pre-
diction [27], circuit partitioning [20], logic synthesis [28] and place-
ment [15, 21] optimization, and analog sizing [25].

Despite such successful application and adoption in EDA, few works
have addressed the severe limitation that conventional shallow GNNs
pose. To the best of the authors’ knowledge, prior work on EDA graph-
based learning seldom stacks beyond four layers of GCN. In a K-layer
GNN, each node only has a receptive field of K-hop neighborhood. Thus
graph topological information beyond its receptive fields can not be
captured with graph convolution. Figure 1 shows an example of the
receptive field of 2-layer GNN, where the features of graph nodes beyond
2-hops away can not be aggregated to the node embedding of interest.
As a result, shallow GNNs can only encode local graph topology features
in node embeddings and cannot express global topological information.

Node of interest

1-hop neighborhood

2-hop neighborhood

3-hop neighbors

4-hop neighbors

Figure 1: The receptive field of 2-layer GNN. Learned features of
only nodes within 2-hops will be aggregated.

However, training deep GNNs is notoriously challenging, and predic-
tion performance is known to decrease with an increasing number of
GCN layers. Conventional GNNs suffer from the over-smoothing problem,
whereby stacking many GCN layers, embeddings of different nodes will
share high similarity due to the highly-overlapped receptive fields [14].
Recent works in the machine learning community have developed a
series of techniques to relieve the over-smoothing issues [9].

In this work, we explore stacking deep GNN layers to learn global
timing metrics from timing graphs. Specifically, we establish a baseline
deep GNN model from the work of GCNII [8]. Given an undirected
graph𝐺 = (𝑉 , 𝐸) with 𝑛 nodes, let𝑨 denote the adjacency matrix and 𝑫
the diagonal degree matrix. In vanilla GCN [13], the graph convolution
layer is defined as follows:

𝑯 (𝑙+1) = 𝜎 (𝑷𝑯 (𝑙)𝑾 (𝑙) ), (1)
where 𝑯 (𝑙) ∈ 𝑹𝑛×𝑑 is the node embedding matrix and𝑾 (𝑙) ∈ 𝑹𝑑×𝑑 the
weight matrix of 𝑙th layer, and 𝑷 :

𝑷 = (𝑫 + 𝑰𝒏)−1/2 (𝑨 + 𝑰𝒏) (𝑫 + 𝑰𝒏)1/2 . (2)
The GCNII model [8] alleviates over-smoothing by introducing residual
connections and identity mapping:

𝑯 (𝑙+1) = 𝜎 (((1 − 𝛼𝑙 )𝑷𝑯 (𝑙) + 𝛼𝑙𝑯
(0) )︸                            ︷︷                            ︸

Residual Connections

((1 − 𝛽𝑙 )𝑰𝒏 + 𝛽𝑙𝑾
(𝑙) )︸                       ︷︷                       ︸

Identity Mapping

), (3)

where 𝛼𝑙 , 𝛽𝑙 are hyperparameters set to 0.1 in our experiments.
Our experimental results in Sec. 4.2 indicate that deep GNN models

can have better expressiveness with increased depth but demonstrate
poor generalization across different designs, possibly due to over-fitting.
We call attention to the EDA community that deep GNN architectures
for learning useful and transferable node embeddings with global circuit
graph topological information remain challenging and underexplored.

Table 1: Benchmark statistics. The 21 benchmarks are randomly
split into the upper 14 benchmarks for training and the lower 7
for testing.

Benchmark #Nodes
#Edges

#EndpointsNet Cell
blabla 55568 39853 35689 1614
usb_cdc_core 7406 5200 4869 630
BM64 38458 27843 25334 1800
salsa20 78486 57737 52895 3710
aes128 211045 148997 138457 5696
wbqspiflash 9672 6798 6454 323
cic_decimator 3131 2232 2102 130
aes256 290955 207414 189262 11200
des 60541 44478 41845 2048
aes_cipher 59777 42671 41411 660
picorv32a 58676 43047 40208 1920
zipdiv 4398 3102 2913 181
genericfir 38827 28845 25013 3811
usb 3361 2406 2189 344
jpeg_encoder 238216 176737 167960 4422
usbf_device 66345 46241 42226 4404
aes192 234211 165350 152910 8096
xtea 10213 7151 6882 423
spm 1121 765 700 129
y_huff 48216 33689 30612 2391
synth_ram 25910 19024 16782 2112
Total Train 920301 660623 608641 34067
Total Test 624232 448957 418072 21977

2.3 Data Generation and Labeling for Open-Source
Open-source has been a huge drive to improve reproducibility and fair-
ness in the field of machine learning research [22], which potentially
reduces unintentional errors by obtaining similar results with shared
code and data. Fortunately, open-source hardware is gaining momen-
tum in the design ecosystem [1], where hardware designs can be freely
used, altered, and distributed. The recent introduction of open-source
process design kits (PDKs) [2] and digital flow chains [3], has opened
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opportunities for circuit designers and EDA researchers to explore open-
source hardware solutions without considering non-disclosure agree-
ment (NDA) restrictions.

In this work, we evaluate our methods using open-source designs,
PDK, and EDA tools. Specifically, we generated timing reports on 21
real-world benchmark circuits with OpenROAD on SkyWater 130nm
technology. The circuit benchmarks are split into training and testing
sets with the benchmark statistics shown in Tab. 1.

3 TIMING ENGINE INSPIRED GRAPH NEURAL
NETWORK MODEL

In this paper, we propose an end-to-end GNN model for timing predic-
tion. We predict the pre-routing net delay and pin arrival times without
the aid of any external router or timer. We overcome the issue of the
limited receptive field by adopting the levelized message-passing flow.
Our model has high explainability and interpretability since it closely
follows the computation flow of an STA engine.

3.1 Computation Flow of Timing Engines
Although it may be tempting to apply fancy machine learning tricks and
brute-force stack deep GCN layers as introduced in Sec. 2.2, the poor
generalization results shown in Sec. 4.2 demonstrate the importance
of EDA domain knowledge for the successful application of machine
learning to our problem. Thus, it is critical to understand the complete
delay computation flow in order to design a graph-based model that
is both sound and powerful. The pin locations for a net would affect
its routing solution, e.g., where Steiner points should be added. For
the widely-used Elmore delay model, a net with a complex routing
solution would not only have a larger net delay but also introduce a
high capacitive load to the driver cell. Such load would be driven by the
logic cell from the last level, enlarging the cell delay. An enlarged load
would also change the signal transition time (slew). The changes in slew
then affect the delay and slew for the next batch of cell arcs. The change
and effects are related in a non-linear way, characterized by a non-linear
delay model (NLDM) and cell library specific to a design process. A
successful model thus has to learn both the routing behavior, net delay
model, and delay computation flow in order to accurately predict the
slack at timing endpoints.

Modern STA engines split the timing analysis process into two steps
to break the dependency mentioned above. First, the net delays and net
loads are computed based on the net routing. Next, the delay-annotated
timing graph is split into topological levels, and the arrival time and slew
are computed level by level. This process is called propagation which
handles the dependency between cell delays and input slew. The number
of topological levels is equal to the maximum logic depth, around 300
on large designs with millions of pins. As a result, we need a receptive
field of at least 300 hops to precisely model the computation of a timing
engine or a conventional GNN of at least 300 layers.

Inspired by the timing engine stated above, we propose re-implement
the message-passing model in GNN to reflect the level-by-level propaga-
tion. Our specially designed GNN model corresponds to the cell library
interpolation and the delay computation process. This combination of
timing engine inspirations and graph learning framework yields an
explainable, interpretable, and flexible end-to-end timing model.

3.2 Data Representation
Analogous to the two types of timing arcs in timing engines, we represent
the circuit as a heterogeneous graph consisting of two types of edges: net
edges and cell edges. The nodes in the graph denote pins in the circuit,
with features and prediction tasks listed in Table 2. The edge features
and tasks are listed in Table 3. The heterogeneous graph structure makes

it convenient to develop different message-passing rules for different
edge types.

Table 2: Pin features and tasks. EL/RF is short for early/late and
rise/fall, i.e., the 4 timing corner combinations in STA.

Type Name Size

Features

is primary I/O pin or not 1
is fanin or fanout 1
distance to the 4 die area boundaries 4
pin capacitance 4 (EL/RF)

Tasks

net delay to root pin 4 (EL/RF)
arrival time 4 (EL/RF)
slew 4 (EL/RF)
is timing endpoint or not 1
required arrival time for endpoints 4 (EL/RF)

Total 27

Table 3: Edge features and tasks. LUT stands for the look-up
tables in the SkyWater130 cell library. For each cell arc, there are
8 LUTs that model the cell delay and slew under 4 timing corner
combinations (EL/RF).

Type Name Size
Features (Net) distances along x/y direction 2

(Cell) LUT is valid or not 8
(Cell) LUT indices 8 × (7 + 7)
(Cell) LUT value matrices 8 × (7 × 7)

Tasks (Cell) edge delay 4 (EL/RF)
Total (Net) 2
Total (Cell) 516

3.3 Graph Neural Network Model
Similar to the structure of a timing engine, our model consists of two
stages: net embedding and delay propagation.

3.3.1 Net Embedding Model. In this stage, we model the post routing
Elmore delay computation from placement inputs. In a router, pins from
the same net are connected by wires forming a tree rooted at the net
driver pin. The structure of this tree is highly related to all pin locations
within the net because Steiner points might be inserted near pin clusters.
Thus, we need a model that can extract statistics from all pin locations.

As shown in Figure 2, our net embedding model computes on the
bi-direction graph consisting of net edges and reversed net edges. There
are three net convolution layers in our model. Each layer transforms the
pin features by graph broadcast and graph reduction. In graph broadcast,
information flows from the net driver to the net sinks through the net
edges. We concatenate the features of the net driver, the net sinks, and
the net edges, and pass through a fully connected neural network layer
to obtain the new features of net sinks. In graph reduction, information
flows backward from the net sinks to the net driver through the reversed
net edges. The model learns statistics from all net sinks through two
reduction channels backed by sum and max operations. We use the
node embedding output of the final layer to predict the net delay from
inputs to outputs. As a result, our net embedding model can be used
standalone to predict net delays similar to the settings of [8]. We also
leave free, unsupervised dimensions in the embeddings to represent
capacitive load, slew, and other features useful for propagation.
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3.3.2 Delay Propagation Model. This stage models the cell delay inter-
polation and the level-by-level arrival time and slew computation. Our
model design is shown in Figure 3. In this stage, we work on the directed
acyclic graph (DAG) formed by the net edges and cell edges. We first
compute the topological levels of pins in the DAG. We then propagate
the node embedding through each level by alternating between net
propagation layers and cell propagation layers.

The net propagation and cell propagation layers are similar to graph
broadcast and graph reduction in the net embedding model, respectively.
However, cell delay propagation is more complex as it involves cell
delay computation with a cell library. The look-up tables (LUTs) in the
cell library have high dimensions, up to 512 floating-point numbers
for each cell arc. To efficiently learn the cell delays, we develop a LUT
interpolation module by first learning the interpolation coefficients
separately for two LUT dimensions, and then combining them with a

Kronecker product to yield a matrix of coefficients, which is applied to
the LUT matrix with the same shape by a dot product. The computed
cell arc messages are then fed into two reduction channels with sum
and max operations similar to the net embedding model. This process is
analogous to the cell delay lookup process in modern STA engines with
the driver cell type and net load statistics as inputs. We use the final
node features to predict arrival time and slew for pins.

Compared to the vanilla deep GCNII model of many layers of the net
embedding GCN layers in 3.3.1, our model performs only one update for
each pin, but the updates are applied asynchronously. The model would
learn the computation steps in STA and can be seen as a timing engine
learned from data with neural networks as function approximators.
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3.4 Enhanced Supervision from Auxiliary Tasks
The objective of our arrival time and slew prediction model can be ex-
pressed as minimizing the L2 distance between the predicted arrival
time/slew and the ground truth. This loss function is shown in Equa-
tion (4), where 𝐺 is the circuit graph, 𝑁 is the number of nodes in the
graph, AS is the ground truth arrival time/slew of pins, and \, 𝜙 are train-
able parameters of the net embedding model and the delay propagation
model, respectively. This loss function has gradients to both \ and 𝜙 and
can be used to train both models.

Latslew (\, 𝜙 |𝐺,AS) =
1
𝑁

∑︁
node 𝑝∈𝐺

𝑀𝜙

prop_atslew (𝑀
\
net (𝐺)) − AS


2

(4)

In addition to Equation (4), we include edge delay tasks to facilitate
model training. Equation (5) shows the cell delay objective to minimize
the L2 distance between predicted cell delays and the ground truth CD.
This task helps the propagation learning by forcing the model to learn
how to compute the cell delay component in arrival times.

Lcelld (\, 𝜙 |𝐺,CD) =
1

𝐸cell

∑︁
cell arc 𝑒∈𝐺

𝑀𝜙

prop_celld (𝑀
\
net (𝐺)) − CD


2

(5)
Equation (6) shows the net delay objective to minimize the L2 distance

between predicted net delays at fan-in nodes and the ground truth ND
from routed nets. This guides the net embedding model to learn the
routing of nets which is also related to net capacitive loads used in
propagation.

Lnetd (\ |𝐺,ND) =
1
𝑁

∑︁
fan-in node 𝑝∈𝐺

𝑀\
net_d (𝐺) − ND


2

(6)

The overall loss function is presented in Equation (7) combining the
main task and two auxiliary tasks. The three components are minimized
simultaneously.

L(\, 𝜙 |𝐺,AS,CD,ND) =Latslew (\, 𝜙 |𝐺,AS)
+ Lcelld (\, 𝜙 |𝐺,CD) + Lnetd (\ |𝐺,ND)

(7)

4 EXPERIMENTAL RESULTS
We implement our models using PyTorch and DGL graph learning frame-
work [26]. We train and evaluate our models on a Linux machine with
one NVIDIA Titan RTX GPU, two Intel Xeon CPUs at 2.20 GHz, and
256GB RAM. All MLPmodels used are implemented with 3 hidden layers,
each with 64 hidden neurons.

4.1 Net Delay Prediction
We compared our net embedding model for delay prediction in Sec. 3.3.1
with the statistical feature-based model in [5]. We confirm their findings
that random forest (RF) performs better than multilayer perceptron
(MLP). However, since GNNs can embed local features with larger graph
receptive fields than immediate neighbors, our model demonstrates
better generalization to test circuits.

4.2 Arrival Time and Slack Prediction
We compare our timer-inspired GNN with the vanilla deep GCNII [8]
baseline. We further note that the deep GCNII model runs out of memory
after stacking beyond 20 layers, thus we only demonstrate results of
stacking 4, 8, 16 layers. Our experimental results and runtime analysis
on arrival time and slack prediction performance are shown in Tab 5. To
further visualize the performance of our GNNmodel, Fig. 4 demonstrates
the strong correlation in both setup and hold slacks at timing endpoints
from our model prediction and ground truth on an example test design
usbf_device. We summarize our findings below:

Table 4: Comparison on net delay prediction performance (𝑅2

score) with statistical feature-based ML models [5].

Benchmark
Statistics-based [5]

Our GNNRF MLP

Train

blabla 0.9978 0.9621 0.9918
usb_cdc_core 0.9905 0.9339 0.9891
BM64 0.9968 0.9604 0.9900
salsa20 0.9969 0.9692 0.9863
aes128 0.9962 0.9554 0.9770
wbqspiflash 0.9955 0.9706 0.9944
cic_decimator 0.9879 0.9331 0.9946
aes256 0.9967 0.9609 0.9790
des 0.9966 0.9678 0.9802
aes_cipher 0.9907 0.9223 0.9752
picorv32a 0.9968 0.9659 0.9865
zipdiv 0.9926 0.9595 0.9957
genericfir 0.9914 0.9313 0.9819
usb 0.9958 0.9770 0.9962

Test

jpeg_encoder 0.9681 0.9624 0.9739
usbf_device 0.9388 0.9359 0.9676
aes192 0.9630 0.9549 0.9691
xtea 0.9235 0.9263 0.9468
spm 0.8844 0.8391 0.9184
y_huff 0.9390 0.9579 0.9664
synth_ram 0.9761 0.9735 0.9439
Avg. Train 0.9944 0.9550 0.9870
Avg. Test 0.9418 0.9357 0.9552

• Results demonstrate that the proposed tricks in Sec. 2.2 in GC-
NII [8] do alleviate over-smoothing with 16 layers outperforming
shallow networks on training data.

• However, by stacking more GCN layers, the GCNII model does
not learn useful graph embeddings and shows poor generalization
results for testing circuits.

• Our timer-inspired GNN model can successfully learn both the
routing behavior and timing engine computation flow that is
transferable to test circuit designs.

• Ablation study on the proposed enhanced supervision of auxiliary
tasks in Sec. 3.4 demonstrates that introducing both net and cell
delay supervision loss improves the learning results, with net
delay loss being more effective.

• Our proposed timing engine inspired GNNmodel is both accurate
and more than three magnitudes faster than running the complete
routing and STA in the OpenROAD flow.
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Figure 4: Slack prediction for design usbf_device. The result
shows a strong correlation between predicted slacks and the
ground truth slacks at all timing endpoints.

5 CONCLUSION
In this work, we present a timing engine inspired GNN model to pre-
dict the arrival time and slack at timing endpoints. Compared with
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Table 5: Comparison on arrival time prediction performance (𝑅2 score) and runtime (s). We compare with vanilla deep GCNII model [8]
using OpenROAD flow as the ground-truth, and conduct ablation study on the edge delay auxiliary tasks.

Benchmark
Arrival Time / Slack Prediction (𝑅2 score) Runtime (s)

OpenROAD Vanilla Deep GCNII [8] Our Timer-inspired GNN OpenROAD Flow Our GNN
Flow 4 layers 8 layers 16 layers Full w/ Cell w/ Net Routing STA Total Full Speed-up

Train

blabla 1.0000 0.5699 0.3878 0.6542 0.9616 0.3133 0.8949 836 23.6 859.6 1.180 728×
usb_cdc_core 1.0000 0.3341 -0.1131 0.5273 0.9751 0.9529 0.9475 3654 4.7 3658.7 0.354 10324×
BM64 1.0000 0.7404 0.6998 0.7542 0.9766 0.9528 0.9146 713 13.6 726.6 0.496 1465×
salsa20 1.0000 0.7624 0.5957 0.7348 0.9624 0.1709 0.8943 1738 29.1 1767.1 0.798 2213×
aes128 1.0000 0.7550 0.7039 0.6985 0.8267 0.9081 0.9487 1787 51.4 1838.4 0.739 2486×
wbqspiflash 1.0000 0.1052 -0.3237 0.2052 0.9721 0.9711 0.9695 181 5.9 186.9 0.536 348×
cic_decimator 1.0000 0.6098 0.2642 0.6704 0.9840 0.9692 0.9777 81 3.3 84.3 0.190 443×
aes256 1.0000 0.7939 0.7619 0.7207 0.8488 0.8261 0.9477 2886 72.0 2958.0 0.769 3845×
des 1.0000 0.8312 0.8689 0.8101 0.9922 0.9879 0.9769 493 16.2 509.2 0.260 1957×
aes_cipher 1.0000 0.6840 0.5846 0.8198 0.9825 0.8825 0.9828 1849 18.7 1867.7 0.359 5198×
picorv32a 1.0000 0.6882 0.6403 0.6561 0.9688 0.9439 0.9005 987 18.5 1005.5 0.817 1230×
zipdiv 1.0000 -0.3324 -1.0497 0.6560 0.9753 0.9786 0.9808 48 3.5 51.5 0.342 150×
genericfir 1.0000 0.8072 0.7132 0.8905 0.8858 0.6793 0.8226 409 11.1 420.1 0.177 2378×
usb 1.0000 0.6448 0.2866 0.7364 0.9784 0.9645 0.9645 45 3.4 48.4 0.164 295×

Test

jpeg_encoder 1.0000 0.7853 0.7259 0.5302 0.8820 0.7916 0.8143 4191 70.3 4261.3 0.773 5509×
usbf_device 1.0000 0.7557 0.7412 0.6210 0.9252 0.8838 0.9330 1525 21.0 1546.0 0.557 2774×
aes192 1.0000 0.7583 0.7148 0.7462 0.8605 0.7928 0.9338 1728 58.6 1786.6 0.789 2264×
xtea 1.0000 -5.1798 -7.0116 -5.4182 0.9135 0.8207 0.8772 174 4.9 178.9 0.544 329×
spm 1.0000 0.4056 0.1036 0.4306 0.8975 0.9157 0.7224 14 4.2 18.2 0.087 210×
y_huff 1.0000 0.6136 0.5660 0.6017 0.9256 0.8568 0.8708 1162 15.4 1177.4 0.300 3927×
synth_ram 1.0000 -4.0511 -1.2762 -8.0822 0.8656 0.6437 0.8078 452 9.3 461.3 0.127 3635×
Avg. Train 1.0000 0.5710 0.3586 0.6810 0.9493 0.8215 0.9374 1121.9 19.6 1141.6 0.513 2361×
Avg. Test 1.0000 -0.8446 -0.7766 -1.5101 0.8957 0.8150 0.8513 1320.9 26.2 1347.1 0.454 2664×

prior work, we remove the need to invoke additional STA, demonstrat-
ing that our GNN model can learn both routing behavior and timing
computation flow in an end-to-end fashion. We explore deep GNN ar-
chitectures and results demonstrate that brute-force deep models are
prone to over-fitting. Experimental results on real-world open-source
designs demonstrate that our model is both accurate and fast.
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