
GPU-accelerated Path-based Timing Analysis

Guannan Guo∗, Tsung-Wei Huang†, Yibo Lin‡, and Martin Wong∗§

∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA
†Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA

‡Department of Computer Science, Peking University, Beijing, China
§Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Abstract—Path-based Analysis (PBA) is an important step in
the design closure flow for reducing slack pessimism. However,
PBA is extremely time-consuming. Recent years have seen many
parallel PBA algorithms, but most of them are architecturally
constrained by the CPU parallelism and do not scale beyond
a few threads. To overcome this challenge, we propose in this
paper a new fast and accurate PBA algorithm by harnessing the
power of graphics processing unit (GPU). We introduce GPU-
efficient data structures, high-performance kernels, and efficient
CPU-GPU task decomposition strateiges, to accelerate PBA to a
new performance milestone. Experimental results show that our
method can speed up the state-of-the-art algorithm by 543× on
a design of 1.6 million gates with exact accuracy. At the extreme,
our method of 1 CPU and 1 GPU outperforms the state-of-the-art
algorithm of 40 CPUs by 25–45×.

I. INTRODUCTION

Path-based Analysis (PBA) is pivotal for achieving ac-

curate timing results by reducing unwanted pessimism in

Static Timing Analysis (STA) [1]. However, PBA is extremely

time-consuming, typically 10-1000× slower than graph-based

analysis (GBA) [2]. The high runtime cost has imposed a

significant barrier for designers to incorporate PBA in the early

design closure flow to improve Quality of Results (QoR) in

the timing landscape. To alleviate the long runtime of PBA,

existing works have proposed various strategies [3], [4], [5],

[6], [7], [8]. However, nearly all of them are architecturally

constrained by CPU parallelism, and their results stagnate

at a few CPU cores. For example, the state-of-the-art PBA

algorithm [3], [4] adopts task-based parallelism with exact

accuracy, but its performance saturates at 16 cores. Jin [6]

proposes a fast and accurate block-based algorithm that im-

proves runtime up to 1.63×, but proposed algorithm is highly

sequential and scales to fewer CPU cores. Peng [7] modifies

GBA and presents a path-oriented calculation model, but its

improvement on accuracy is limited. Guo [9] has used GPUs

to accelerate RC updates and graph levelization in GBA. Yet

the same idea cannot be applied to PBA because PBA requires

path-specific management and analysis.

As illustrated in Figure 1, fundamental computational chal-

lenges of PBA remain unsolved. Current STA engines have

very limited performance gain by counting on multi-core

CPUs. To achieve transformational performance milestone,

new PBA algorithm must harness the power of heterogeneous

parallelism, CPU-GPU hybrid computing. Nevertheless, of-

floading PBA to GPU is an extremely challenging task for

three reasons. Firstly, PBA is graph-oriented and involves

irregular computational patterns, requiring very strategic de-

composition between CPU and GPU to benefit from hetero-

geneous parallelism. Secondly, the dynamic process of path

generation needs specially-designed GPU kernels to search for

critical path and maintain path priorities. Lastly, to support a

large number of paths, we need efficient data structures to

overcome the hurdle of relatively limited GPU memory.

Logarithmic Runtime

P
es

si
m

is
m

min max

max

�

Our PBA

1CPU-1GPU

Fundamental computational challenges of Path-

based Analysis must be solved

Fig. 1: Computational trade-off between runtime and pessimism
reduction on path-based timing analysis.

In this work, we propose a novel GPU-accelerated PBA

algorithm to overcome the challenges of long runtimes of PBA.

We focus on the core building block, critical path generation,

which spends the most time of PBA [1]. Specifically, we

identify a set of paths in a decreasing order of their criticality

from an updated STA graph such that any PBA algorithms or

frameworks can perform path-specific update on the path set.

We highlight three key contributions as follows:

• GPU-accelerated path search algorithm. We design a

GPU-accelerated algorithm that iteratively explores critical

path candidates from the previously identified critical paths.

We construct a shortest path forest by unifying the worst

critical paths at different flip-flops and primary outputs

with GPU threads. Starting with the forest, we explore

new critical path candidates by alternating path prefixes

concurrently.

• GPU-efficient data structures. We organize critical path

candidates in a specially designed array structure that is

highly efficient for GPU. The total memory complexity is

linear to the circuit graph size and the requested critical

path count. During the kernel execution, each set of newly

explored path candidates are dynamically allocated in an



efficient one-dimensional (1D) array. Based on the priorities

of critical paths (i.e., slack), we prune and compress the path

set to improve GPU memory efficiency.

• Scalable to large numbers of critical paths. Our path

search algorithm enables each GPU thread to independently

explore new critical path candidates without contending

with other threads. We separate critical path candidates into

different groups based on their path prefixes and we dispatch

each group into thousands of GPU threads. Our strategy

scales to millions of paths during the search process.

We evaluate our algorithm on real designs with a golden

reference generated by an industrial standard timer [10]. Our

algorithm can scale to millions of critical paths that match

the result of the golden reference. Compared to the state-of-

the-art path generation algorithm [3], [8], we obtain up to

543× speed-up on million-gate designs. At the extreme, our

algorithm of 1 CPU and 1 GPU is 25–45× faster than the

baseline of 40 CPUs. Our algorithm can enable designers to

incorporate PBA earlier in the design flow to imporve QoR

with reasonable turnaround time.

II. PATH-BASED TIMING ANALYSIS

PBA is a pivotal step in STA [1]. STA models the circuit as

a directed acyclic graph (DAG). Each vertex in the graph rep-

resents a pin and each edge represents a pin-to-pin connection.

A typical STA flow performs GBA first to update the graph

with timing information, such as parasitics, slew, delay, and

arrival time, at the worst-case scenario (i.e., min and max) [1].

GBA is fast but pessimistic. Therefore, PBA is performed

after GBA to update the slack with path-specific properties,

including common path pessimism removal (CPPR), advanced

on-chip variation (AOCV), and so on to remove unwanted

pessimism [3]. Among various PBA frameworks, identifying

a set of critical paths to analyze is imperative. However, this

process is extremely time-consuming and involves computing

an exponential number of paths that can take several hours

to finish. It has been highlighted that EDA vendors should

improve the runtime performance of PBA with new parallel

paradigms [11].

III. PROPOSED GPU-ACCELERATED PBA

Figure 2 shows the overview of our GPU-accelerated PBA

algorithm. The blue block and the white block denote the

computation on GPU and CPU, respectively. We start off by

constructing a shortest path forest based on a updated STA

graph. Then, we iteratively explore critical path candidates

by permuting path prefixes. Each iteration consists of three

heterogeneous steps: (1) Look-ahead Level Allocation. (2)

Interlevel Expansion. (3) Intralevel Compression. We define

the set of path candidates with the same number of path prefix

permutations as a level set. We maintain a level counter to

record the number of expanded levels. When the level counter

reaches a threshold of decent accuracy (tunable depending on

the GPU capability), we stop the iteration and derive the final

critical paths from the implicit path representation on GPU.

Construct Shortest Path Forest

Look-ahead Level Allocation

Interlevel Expansion

Intralevel Compression

max level

Increment level

Y

N

Path Recovery

CPU Execution

GPU Execution

Fig. 2: Overview of our GPU-accelerated PBA algorithm.

A. STA Graph Structure on GPU

To offload PBA to GPU, we must efficiently represent the

STA graph on GPU. We collect all fan-in or incoming edges of

each vertex and denote this collection as graph G−. Similarly,

the collection of all fan-out or outgoing edges of each vertex

is denoted as graph G+. We use the Compressed Sparse Row

(CSR) format to represent G− and G+. CSR is one of the

most common graph formats used in GPU applications [12].

CSR requires three 1D arrays to represent a weighted directed

graph. The format includes a vertex array for row offsets, an

edge array for column values, and a weight array for weights

of all edges. Therefore, CSR is highly memory efficient. The

total size of CSR is only N + 2M for a graph with vertex

number N and edge number M .

B. Shortest Path Forest

To efficiently enumerate paths on GPU, we introduce a

compact data structure, shortest path forest, to hold path suffix

information. Existing methods [3], [8] construct an indepen-

dent shortest path tree at each datapath endpoint regardless of

overlap between trees. This causes redundant tree construction

in overlapped area and waste of memory. Instead, we unify all

shortest path trees into a forest that includes a predecessor

array forest[N] and a distance array distances[N],

which eliminates redundant construction at the same vertex.

Figure 3 illustrates a shortest path forest (3b) constructed

from the STA graph (3a). The shortest path forest consists

of three shortest path trees rooted at vertices J, K, and L,

respectively. We can observe that trees rooted at J and L are

not fully built to the startpoints, because the tree rooted at K

has smaller cumulative distances at overlapped vertices. This

saves the effort to build the trees J and L all the way to vertex

A and C. By merging shortest path trees together, our shortest

path forest is much more compact and memory-efficient than

building each independent shortest path tree.

We leverage GPU to construct the shortest path forest.

Inspired by the GPU-accelerated Dijkstra’s algorithm [13],

[14], we mark all datapath endpoints as destinations and



A

B

D

E

G

H

C F I L

K

J
4 3 2

1

4

3
1

2 2

4 5

3 6 1

 Startpoint Endpoint

(a) STA Graph.

A/7

B/8

D/5

E/6

G/2

H/2

C/8 F/5 I/1 L/0

K/0

J/0

Shortest Path Tree

Rooted at J

Shortest Path Tree

Rooted at K

Shortest Path Tree

Rooted at L

(b) Shortest path forest.

Fig. 3: Shortest path forest generation on GPU.

propagate the shortest distances concurrently with required

arrival time as their initial offsets. Our algorithm iteratively

invokes the distance update kernel in Algorithm 1 to propagate

shortest distances until no distances can be updated. Algorithm

1 assigns each thread a vertex (line 1 and 2). If the assigned

vertex has been updated (line 5), its thread needs to propagate

distances to adjacent vertices (line 15). The distance array

distances[N] will be finalized after convergence. We can

recover the edge array or predecessor array forest[N] by

matching edge weight with the distance array. Algorithm 1

can quickly construct the shortest path forest because the

GPU kernel updates a batch of vertices concurrently at each

iteration.

C. Look-ahead Level Allocation

The goal of look-ahead level allocation is to arrange the

output locations of each thread prior to expansion so that

thread contention can be avoided. We take the idea of row

offset in the CSR graph format into our critical path data

structure. The output location of each critical path in the

expansion is strictly tied to parent of the path. We compute and

sum over the number of critical path candidates that originate

from each previously identified critical path. We leverage

the implicit critical path representation in the state-of-the-art

algorithm [3] for memory efficiency. Given the shortest path

forest constructed in Section III-B, we separate edge set of the

STA graph into two groups. The group of edges in the shortest

path forest are defined as suffix edges. The rest of edges

are defined as deviation edges. We can represent any critical

paths with deviation edges because the explicit path trace can

be recovered later by complementing with suffix edges. The

number of deviation edges in this implicit representation is

denoted as deviation level. All critical path candidates with

the same deviation level are saved in a compact 1D array. For

Algorithm 1: Propagate Distance Kernel

Input : G−in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ], weights[M ]

Input : Shortest distance cache, distanceCache[N ]
Input : Array indicating vertices with updated distances,

distanceUpdated[N ]
Result: Shortest distances array, distances[N ]

1 tid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if tid ≥ N then
3 return;
4 end
5 if distanceUpdated[tid] is false then
6 return;
7 end
8 distanceUpdated[tid] ← false;
9 edgeStart ← vertices[tid];

10 edgeEnd ← (tid == N-1) ? M : vertices[tid+1];
11 for eid ← edgeStart to edgeEnd do
12 neighbor ← edges[eid];
13 weight ← weights[eid];
14 newDis ← distances[tid] + weight;
15 atomicMin (&distanceCache[neighbor], newDis);
16 end
17 return;

instance, the set of shortest paths involves no deviation edges

and these paths compose deviation level 0.

TABLE I: Data field of deviation edge

Field Definition

level deviation level number

from deviation starting point

to deviation ending point

parent parent index from previous level

childOffset row offset of children in next level

slack path slack value

Data fields for each deviation edge are shown in Table

I. We use parent and childOffset to establish level

connections. Data field parent can backtrace the critical

path parent until one of the shortest paths is reached. Data

field childOffset can keep track of the output locations

of newly explored path candidates.

In the first kernel of this step, shown in Algorithm 2, we

assign each deviation edge entry in current level with one GPU

thread (line 1 and 5). The task of each thread is to compute

the number of child deviations (line 7) and save the number in

childOffset (line 8). We then launch prefix-sum kernels

to obtain the correct offset. The childOffset of the last

entry in current level will be the total number of explored

paths in the next level. We can use this number for dynamic

allocation of next level. Up to this point, preparation for level

expansion is complete.

D. Interlevel Expansion

The objective of this step is to write all data fields of

deviation edge except childOffset in the new level. Figure

4 illustrates expansion process from deviation level 0 to



Algorithm 2: Compute Path Count Kernel

Input : G+ in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ]

Input : Shortest path forest edge array, forest[N ]
Input : currLevel as current level
Input : levelSize as the number of entries in current level
Result: Compute path numbers originated from current level

1 tid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if tid ≥ levelSize then
3 return;
4 end
5 v ← currLevel[tid].to;
6 /* Get the number of deviation paths

starting from vertex v in the forest */

7 pathNum ← getPathNum(v, vertices, edges, forest);
8 currLevel[tid].childOffset ← pathNum;
9 return;

deviation level 1 on the STA graph from Figure 3a. The ex-

pansion begins with deviation level 0, {e∅A, e∅B, e∅C}, which

represents shortest paths set {AEHK,BEHK,CFK}. As

for notation, e∅A is a virtual deviation edge that means the

shortest path starting from vertex A.

A D

E

G

H K

B E

G

H K

E

C F I

K

Startpoint EndpointDeviation Edge Suffix Edge

Path AEHK

Path BEHK

Path CFK

Level 0 Level 1

Fig. 4: GPU expansion of the first level.

When we expand next level, we traverse each critical path

P of current level and look for deviation edges along the path.

These deviation edges will be filled out in the next level as

children of P . For example, shortest path from vertex A, or

e∅A in implicit representation, connects to two deviation edges

eAD and eHG. In deviation level 1, {eAD, eHG} or paths

{ADGJ,AEHGJ} are children of e∅A. Same procedure

happens simultaneously for shortest paths from B and C. For a

deviation edge evu along the path P , the slack value slacknew
of this new path can be computed with the following formula:

slacknew = slackP+distance(u)+weight(evu)−distance(v)

Algorithm 3 shows the kernel implementation that complies

with the expansion rules above. We launch the kernel with one

deviation edge in current level per GPU thread (line 1). Each

GPU thread is tasked to fill out all the children information in

Algorithm 3: Expand New Level Kernel

Input : G+ in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ], weights[M ]

Input : Shortest path forest, forest[N ] as edge array,
distances[N ] as distance array

Input : currLevel as current level
Input : levelSize as the number of entries in current level
Result: Explore critical path candidates in next level

1 tid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if tid ≥ levelSize then
3 return;
4 end
5 offset ← (tid == 0) ? 0 : currLevel[tid-1].childOffset;
6 level ← currLevel[tid].level;
7 slack ← currLevel[tid].slack;
8 v ← currLevel[tid].to;
9 while v is not endpoint do

10 edgeStart ← vertices[v];
11 edgeEnd ← (v == N-1) ? M : vertices[v+1];
12 for eid ← edgeStart to edgeEnd do
13 neighbor ← edges[eid];
14 weight ← weights[eid];
15 if eid is deviation edge then
16 /* Fill out child path data */

17 newPath ← nextLevel[offset];
18 newPath.level ← level+1;
19 newPath.from ← v;
20 newPath.to ← neighbor;
21 newPath.parent ← tid;
22 newPath.childOffset ← 0;
23 newPath.slack ← slack + distances[neighbor] +

weight - distances[v];
24 offset ← offset + 1;
25 end
26 end
27 /* Traverse along the shortest path

forest */

28 v = forest[v];
29 end
30 return;

the range of childOffset of next level (line 5, 17, and 24).

The path prefix permutation starts from the place left off by

the parent (line 8) and continues along the shortest path (line

28). With the help of childOffset, threads are dispatched

to distinct memory locations. For example, as shown in Figure

4, each thread is assigned to expand one path in deviation level

0. The output locations are separated in deviation level 1 so

no shared data synchronizations are required. Therefore, our

algorithm is highly scalable since no explicit synchronizations

are needed.

E. Intralevel Compression

Although the diameter (longest critical path) of an STA

graph is typically smaller than graph size [1], the memory

of GPU can be exhausted after a few iterations of expansion.

Therefore, after the new level is full with critical path can-

didates, we perform compression to remove unwanted paths

and improve memory efficiency. Assume the STA graph has

vertex number N , edge number M , graph diameter d, and

maximum fanout number fmax
out . The size of new level will be



amplified by O(dfmax
out ) during each expansion. To compress

the new level before it can be used for next expansion, we

sort the new level based on path priorities (i.e., slack) and

keep top k candidates with k as the number of requested

paths. The childOffset field will be invalidated after sort

but the explicit path can still be recovered by backtracing

parent. For maximum iteration number equal to diameter

d, the worst memory complexity is O(N + M + dkfmax
out ).

One part O(N +M + dk) is fixed for CSR graph format and

final path report. The other part O(dkfmax
out ) is required for

dynamic allocation of new level. We choose to use CPU to

compress each level, because the array we sort is not large.

F. Critical Paths Recovery

Since our deviation edge representation is different from the

explicit path trace, we have to perform critical path recovery

to obtain full path trace. As the iteration expires at maximum

deviation level (MDL), we collect our final path report by

merging sorted arrays from all levels. For each deviation edge

in the final report, we backtrace parent to obtain a list of

deviation edges. Given the list, we complement the edges with

suffix edges in the shortest path forest to recover the explicit

critical path. For example, assume e∅C → eCE in Figure 4 is

selected in the final report. We recover the full path trace with

forest edges in Figure 3b and obtain full path trace CEHK .

Since the entire path recovery requires linear complexity to the

requested path number k and graph diameter d, the process can

be performed fast enough on CPU.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate that our GPU-accelerated

algorithm can efficiently generate accurate path reports with

thousands to millions of paths. We conduct our experiments

on a 64-bit Ubuntu Linux machine with 1 GeForce RTX 2080

GPU and 40 2GHz Intel Xeon Gold 6138 CPU cores. We

compile our programs with CUDA NVCC 11.0 device com-

piler and GNU GCC 8.3.0 host compiler, where optimization

flag -O2 and C++17 standard -std=c++17 are enabled.

We use 1024 threads per block for all kernel configurations

and 1 CPU core for all host operations. We consider the

state-of-the-art path generation algorithm [3] as our baseline.

To the best knowledge of the authors, the baseline has the

best time complexity and practical efficiency. It has been

implemented in the open-sourced STA tool, OpenTimer, as

its core path generation algorithm [15], [8]. We evaluate our

algorithm on real designs with a golden reference generated by

an industrial standard timer [10]. To ensure fairness, we restrict

our comparison to the path-based analysis part in OpenTimer.

A. Path Report Accuracy

Our algorithm can generate accurate timing report. In order

to evaluate its accuracy, we use our algorithm and OpenTimer

to generate separate timing reports of the same number of

critical paths. We take the absolute slack difference between

every pair of critical paths in two reports and record the

maximum difference value. We repeat this process for different

maximum deviation levels and plot our data in Figure 5. We

perform this evaluation with up to a million critical paths on

large benchmarks. The statistics of each benchmark are shown

in Table II. As demonstrated in Figure 5, our algorithm reports

almost identical critical paths as OpenTimer by expanding to

10 deviation levels on all benchmarks. This holds true even

for 1M critical paths on million-gate designs leon2 (1.6M

gates), leon3mp (1.2M gates), and netcard (1.5M gates). As

we increase the deviation level, the accuracy keeps improving.

For example, from level 2 to level 3, the maximum absolute

error in 1M critical paths is reduced by over 1000 ps in most

designs. Next, we compare the detailed path trace between

reports. Our algorithm can report 1M critical paths exactly the

same as OpenTimer on these benchmarks after 15 deviation

levels of expansion. Moveover, we observe using 10 deviation

levels can match 99.9% of the golden reference.

B. Runtime Performance

Our algorithm can significantly accelerate critical path

generation. We compare runtime (ms) of our algorithm (1

GPU) with runtime (ms) of the PBA in OpenTimer (1 CPU

core) by reporting 100K critical paths on the 10 largest

benchmarks. We run our algorithm at maximum deviation

levels (MDL) 10, 15, and 20, where our reports produced

exact match with OpenTimer (see Section IV-A). Details of

our experimental results are shown in Table II. We can observe

that our algorithm achieves significant speed-up on million-

gate designs over OpenTimer. With MDL equal to 15, we

accelerate the baseline 543× on leon2 (1.6M gates), 172× on

leon3mp (1.2M gates), and 304× on netcard (1.5M gates). Our

algorithm also achieves over an order of magnitude speed-up

on medium benchmarks, such as 77.9× on vga lcd, 88.3× on

vga lcd iccad, and 31.5× on des perf ispd.

To demonstrate our performance advantage over the base-

line, Figure 6 plots the speed-up curve of our algorithm

over the baseline across different numbers of CPU cores.

We observe that the performance of baseline continues to

improve as the number of cores increases but saturates at

about 16 cores, and there is always a significant performance

margin to ours. With the baseline at the maximum CPU

concurrency of 40 cores, our algorithms is still faster than the

baseline by 44.88×, 24.90×, 45.68×, and 35.27× on large

designs leon2, leon2mp, netcard, and b19 iccad, respectively.

In fact, according to our experiments, our GPU-accelerated

PBA algorithm is always faster than the baseline in all designs,

regardless of the number of CPU cores the baseline uses.

V. CONCLUSION

In this paper, we have introduced a novel GPU-accelerated

PBA algorithm to overcome the runtime bottleneck of CPU-

based PBA. We decompose the critical path generation into

multiple GPU-accelerated kernels and leverage the implicit

path representation method to design GPU-efficient data struc-

tures. Experiments show that our algorithm achieves up to

543× speed-up on an 1.6M-gate design over the state-of-the-

art PBA algorithm. At the extreme, our algorithm is 25-45×



5 10 15 20

0

1,000

2,000

3,000

4,000

5,000

Maximum deviation level

M
ax

im
u

m
ab

so
lu

te
er

ro
r

(p
s)

leon2

Path number=10K

Path number=100K

Path number=1M

5 10 15 20

0

1,000

2,000

3,000

4,000

Maximum deviation level

M
ax

im
u

m
ab

so
lu

te
er

ro
r

(p
s)

leon3mp

Path number=10K

Path number=100K

Path number=1M

5 10 15 20

0

1,000

2,000

3,000

4,000

5,000

Maximum deviation level

M
ax

im
u

m
ab

so
lu

te
er

ro
r

(p
s)

netcard

Path number=10K

Path number=100K

Path number=1M

5 10 15 20

0

2,000

4,000

Maximum deviation level

M
ax

im
u

m
ab

so
lu

te
er

ro
r

(p
s)

b19 iccad

Path number=10K

Path number=100K

Path number=1M

Fig. 5: Maximum absolute error between timing reports from our algorithm and OpenTimer

TABLE II: Runtime performance (ms) comparison between OpenTimer and our GPU-accelerated algorithm (1 GPU)

Benchmark #Pins #Gates #Arcs
OpenTimer

Runtime

Our Algorithm

#MDL=10

Our Algorithm

#MDL=15

Our Algorithm

#MDL=20

Runtime Speed-up Runtime Speed-up Runtime Speed-up

leon2 4328255 1616399 7984262 2875783 4708.36 611× 5295.49ms 543× 5413.84 531×

leon3mp 3376821 1247725 6277562 1217886 5520.85 221× 7091.79ms 172× 8182.84 149×

netcard 3999174 1496719 7404006 752188 2050.60 367× 2475.90ms 304× 2484.08 303×

vga lcd 397809 139529 756631 53204 682.94 77.9× 683.04ms 77.9× 706.16 75.3×

vga lcd iccad 679258 259067 1243041 66582 720.40 92.4× 754.35ms 88.3× 766.29 86.9×

b19 iccad 782914 255278 1576198 402645 2144.67 188× 2948.94ms 137× 3483.05 116×

des perf ispd 371587 138878 697145 24120 763.79 31.6× 766.31ms 31.5× 780.56 30.9×

edit dist ispd 416609 147650 799167 614043 1818.49 338× 2475.12ms 248× 2900.14 212×

mgc edit dist 450354 161692 852615 694014 1463.61 474× 1485.65ms 467× 1493.90 465×

mgc matric mult 492568 171282 948154 214980 994.67 216× 1075.90ms 200× 1113.26 193×

1 8 16 24 32 40
0

100

200

300

400

500

543.00×

181.00×

69.70× 56.39× 50.65× 44.88×

Number of CPU cores in baseline

O
u

r
sp

ee
d

-u
p

/m
u

lt
i-

co
re

C
P

U
sp

ee
d

-u
p leon2

1 8 16 24 32 40

50

100

150

171.73×

39.75×
28.81× 25.37× 24.32× 24.90×

Number of CPU cores in baseline

O
u

r
sp

ee
d

-u
p

/m
u

lt
i-

co
re

C
P

U
sp

ee
d

-u
p leon3mp

1 8 16 24 32 40

100

200

300
303.80×

75.95×
54.64× 49.24× 46.10× 45.68×

Number of CPU cores in baseline

O
u

r
sp

ee
d

-u
p

/m
u

lt
i-

co
re

C
P

U
sp

ee
d

-u
p netcard

1 8 16 24 32 40

40

60

80

100

120

140 136.54×

43.76×

33.55× 36.51× 35.28× 35.27×

Number of CPU cores in baseline

O
u

r
sp

ee
d

-u
p

/m
u

lt
i-

co
re

C
P

U
sp

ee
d

-u
p b19 iccad

Fig. 6: Speed-up values of our algorithm over the baseline at different numbers of CPU cores.

faster than the baseline of 40 cores on million-gate designs.

We believe our algorithm can promote PBA in the earlier stage

of design closure flow to improve QoR and turnaround time.

REFERENCES

[1] J. Bhasker et al., Static Timing Analysis for Nanometer Designs: A

Practical Approach. Springer, 2009.

[2] T. Huang, M. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran, “A
distributed timing analysis framework for large designs,” in ACM/IEEE

DAC, 2016, pp. 1–6.

[3] T. Huang and M. Wong, “UI-Timer 1.0: An Ultrafast Path-Based Timing
Analysis Algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11, pp. 1862–
1875, 2016.

[4] T. Huang, C. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast Task-
Based Parallel Programming Using Modern C++,” in IEEE IPDPS,
2019, pp. 974–983.

[5] P. Lee, I. H. Jiang, and T. Chen, “FastPass: Fast timing path search for
generalized timing exception handling,” in IEEE/ACM ASPDAC, 2018,
pp. 172–177.

[6] B. Jin, G. Luo, and W. Zhang, “A fast and accurate approach for common
path pessimism removal in static timing analysis,” in IEEE ISCAS, 2016,
pp. 2623–2626.

[7] F. Peng, C. Yan, C. Feng, J. Zheng, S. Wang, D. Zhou, and X. Zeng,
“A General Graph Based Pessimism Reduction Framework for Design
Optimization of Timing Closure,” in ACM/IEEE DAC, 2018, pp. 1–6.

[8] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2020.

[9] Z. Guo, T. W. Huang, and Y. Lin, “GPU-Accelerated Static Timing
Analysis,” in IEEE/ACM ICCAD, 2020, pp. 1–9.

[10] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental
timing analysis,” in IEEE/ACM ICCAD, 2015, pp. 882–889.

[11] “EDA Vendors Should Improve The Runtime of PBA,” https://www.
electronicdesign.com/technologies/eda/article/21796368.

[12] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in IEEE/ACM SC, 2009.

[13] P. Harish et al., “Accelerating Large Graph Algorithms on the GPU
Using CUDA,” in HiPC. Springer, 2007, pp. 197–208.

[14] P. J. Martı́n et al., “CUDA Solutions for the SSSP Problem,” in ICCS.
Springer, 2009, pp. 904–913.

[15] T. Huang and M. Wong, “Opentimer: A high-performance timing
analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.


