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Abstract. An optimized source has the ability to improve the process window during lithography in semicon-
ductor manufacturing. Source optimization is always a key technique to improve printing performance.
Conventionally, source optimization relies on mathematical–physical model calibration, which is computationally
expensive and extremely time-consuming. Machine learning could learn from existing data, construct a predic-
tion model, and speed up the whole process. We propose the first source optimization process based on autoen-
coder neural networks. The goal of this autoencoder-based process is to increase the speed of the source
optimization process with high-quality imaging results. We also make additional technical efforts to improve the
performance of our work, including data augmentation and batch normalization. Experimental results demon-
strate that our autoencoder-based source optimization achieves about 105× speed up with 4.67% compromise
on depth of focus (DOF), when compared to conventional model-based source optimization method. © 2019 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.18.4.043506]
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1 Introduction
Optical lithography has been an important part in semicon-
ductor manufacturing.1 As the technology node continues to
shrink, the feature sizes are getting smaller and smaller. The
improvement of image quality relies on resolution enhance-
ment techniques (RETs), such as phase-shift mask, optical
proximity correction (OPC), and subresolution assist feature
(SRAF) insertion. Source optimization, as one of the RETs,
could help to improve the image quality by modifying the
source intensity distribution and the incident light rays’
directions.

Source optimization starts at the application of the off-axis
illumination, then plenty of research on source optimization
have been proposed.2–7 Tian et al.8 explored the relationship
between the critical patterns and the optimized source and
demonstrated the effectiveness of a pixelated source. Mulder
et al.9 described the FlexRay, which could generate free
sources by manipulating an array of mirrors. With the benefit
of faster convergence, particle swarm optimization is used by
Wang et al.10 to implement source optimization. In addition to
obtaining the optimized source for some specific patterns,
source optimization could also be conducted in the co-optimi-
zation of mask patterns and source.11 There are various
research efforts in this area. Peng et al.12 utilized the gradients
of the objective function to guide the optimization. Shen
et al.13 applied the level-set-based inverse lithography technol-
ogy to co-optimize the source and the mask. Li et al.14 used the
augmented Lagrangian methods (ALMs) and quasi-Newton
method to accelerate the optimization process. However, gra-
dient-based method, level-set-based method, and ALMs are
sensitive to local information and the optimization could be

compromised. Therefore, Fuhner and Erdmann15 applied a
genetic algorithm for source mask optimization (SMO), due
to its insensitivity to the local information. Sun et al.16 formu-
lated the SMO as a nonlinear compressive sensing recon-
struction problem and applied the Newton-iteration hard-
thresholding algorithm to accelerate convergence. Moreover,
SMO for extreme ultraviolet lithography (EUVL) has also
been explored. Ma et al.17 developed the parametric SMO and
the pixelated SMO with the gradient-based numerical algo-
rithms for EUVL. There are also efforts toward fast methods
for source optimization. For example, Rosenbluth and
Seong18 considered a simplified model in which the mask
clips are already defined and where the exposing dose devel-
ops according to a simple threshold model. They formulated
source optimization as a near-linear-programming problem
and solved it quite quickly.

For source optimization, previous work mostly relied on
mathematical–physical model construction and calibration,
which demand huge computational resources and running
time. Though this kind of model calibration and simulation
aim to achieve optimal source optimization, it is not practical
for real manufacturing due to the huge time cost. For each
input layout, model simulation output the optimized source
which could achieve the best imaging quality. In real inte-
grated circuit manufacturing, in terms of the cost, different
clips of layout patterns may share one source during lithog-
raphy as long as the imaging quality meets the manufacture
standard. The optimized sources obtained from simulation
only provide guidance to the construction of the final source
for manufacture. This means, source that could provide basic
guidance is good enough for the manufacturing, and there is
no need to spend too much time on getting the optimal
source from the perspective of the calibrated model.
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The machine learning technique could learn from the
training dataset and calibrate a mathematical model to
conduct predictions. The model training and calibration are
a one-time event, and predicting with the calibrated model
is fast and comparably accurate. Therefore, the machine
learning technique has been applied in computational
lithography-related research, such as lithographic hotspot
detection,19 OPC,20–22 and SRAF insertion.23 The machine
learning techniques take the feature of layout patterns as
input, learn the correlation between layout features and the
output object (e.g., hotspots or nonhotspots for the hotspot
detection, the shifting distance of an edge segment for the
OPC, and locations and shape for the SRAF insertion), and
develop the prediction model. The machine learning tech-
niques also fit for the optical source optimization domain.
However, to the best of our knowledge, there is no prior
research in applying the machine learning technique to the
source optimization.

In this paper, we propose the first machine learning-based
framework for source optimization. We apply an autoencoder
neural network24 in our approach. Usually training an autoen-
coder is an unsupervised learning, where the input is the same
as the output. The autoencoder also could achieve dimension-
ality reduction and encode the input image data. There are
many different researches on autoencoder. The autoencoder
could be used for image reconstruction and anomaly detec-
tion. Zheng and Peng25 applied an autoencoder for electrical
capacitance tomography image reconstruction. Deng et al.26

combined an unsupervised autoencoder training with a super-
vised classifier learning, trained a feature extractor along with
a semisupervised classifier, and achieved satisfying results on
speech emotion recognition. Zamini and Montazer27 applied
autoencoder-based clustering for fraud detection. Chen et al.28

trained an autoencoder and used the reconstruction error as the
anomalous scores to find the anomaly.

Our approach, which is based on autoencoder, could
achieve fast source optimization with little imaging quality
compromise. The main contributions are summarized as
follows.

• An autoencoder-based framework is proposed for the
source optimization, where the model is calibrated with
the model-based optimized source as the training data.

• A pretraining and fine-tuning paradigm is developed to
fit the real manufacturing, which trains the prediction
model with the consideration of limited data.

• The experimental results show that the framework can
achieve at least 105× speed-up with about 4.67%
compromise on depth of focus (DOF), compared to the
professional software for source optimization.

The rest of the paper is organized as follows. Section 2
introduces basic concepts and provides the problem formu-
lation. Section 3 presents the detailed algorithm for the
autoencoder-based neural networks. Section 4 validates the
proposed framework with experimental results. Section 5
concludes the paper.

2 Preliminaries and Problem Formulation
In this section, we will review the background of source opti-
mization and provide the problem formulation in this work.

2.1 Source Optimization

In optical lithography, light emitting from the illumination
source will pass through the lithography mask and transform
the shape of the layout patterns from the mask to the photo-
resist. The intensity and incident angle of light could influence
the quality of the printing contour. A bad imaging quality
will cause a fail transform and will lead to a rework of lithog-
raphy. To avoid this, source optimization is indispensable.

Source optimization starts from a simple set of parameters
for annular and multiple source shapes. Then the freeform
illumination sources9 lead to superior tuning flexibility by
describing the source with intensity points arrayed in two-
dimensional (2-D) grids. Conventionally, the lithography im-
aging model is used to help in optimizing the source. Mainly,
the imaging model includes the aerial imaging formation and
the photoresist development. Pixel values of the source are
updated iteratively with the objective to minimize the error
difference between the photoresist image and the target pat-
tern. Optimized source could be constructed easily through
this process. Lithography imaging model-based optimization
is extremely time-consuming and often slows down the
fabrication.

Figure 1 presents the conventional flow which is used to
generate the final source in real manufacturing. First, we
choose the representative layout clips from the whole layout
clips. These representative layout clips cover the critical and
tight parts of the whole layout clips. This step typically is
conducted by lithography engineers based on their experi-
ence. Then, we conduct source optimization on the selected
representative layout clips to get the optimized global source.
This optimized global source is suitable for printing all
selected clips with good performance. Then, to check the
global source’s suitability for all layout clips, we apply the
global source on all layout clips and check the imaging per-
formance through lithography simulation. If the imaging per-
formance is acceptable, then the optimized global source is
set as the final source. Otherwise, we need to find the critical
process window (PW)-limited layout clip and get the opti-
mized local source for the clip through source optimization.

Selected 
layout clips

Optimized 
global source

Final source

Layout 
clips

Source 
optimization

Source suits 
for all layout 

clips?

Y

PW-limited 
layout clip

Source 
optimization

Optimized 
local source

N

Modified 
global source

Lithography 
simulation

Fig. 1 The conventional final source generation flowchart in real
manufacturing.
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This process is marked with the blue dash rectangle in Fig. 1.
Then, the lithography engineer could use the optimized local
source as a guide to modify the optimized global source
based on their experience. We use the modified global source
as the starting point for source optimization on the selected
layout clips and get the new optimized global source. The
new optimized global source is used to check the imaging
performance again. This iteration will stop until the opti-
mized global source is suitable for all layout clips to get the
acceptable imaging quality.

To evaluate the performance of an optimized source, the
imaging contour is simulated through the lithography model
with the optimized source as the illuminator. The better the
imaging quality, the better the performance of the optimized
source. To quantify the lithographic variations, we define the
following metrics.

Definition 1 (PW). To guarantee the contour on photo-
resist meets the process standard, lithography parameters are
all under control of a small region, which is called the PW.29

PW is defined by focus–energy matrix and is evaluated
by DOF.29

Definition 2 (DOF). DOF is used to evaluate PW. It rep-
resents the relationship between the imaging quality and the
position of wafer surface. The printing quality is guaranteed
to be good within DOF.

Definition 3 (exposure latitude). Exposure latitude
(EL)29 is a measure of a lithographic system’s insensitivity
to the dose variation. It relates to the aerial image contrast.
High EL permits a greater variance of exposure and still
achieves an acceptable result.

Definition 4 (mask error enhancement factor). Mask
error enhancement factor (MEEF)29,30 is defined as the ratio
of the change in resist feature width to the change in mask
feature width, supposing that everything else in the process
remains constant.

The objective of source optimization is to minimize the
difference between the photoresist contour and the target lay-
out patterns. To do this, the aim is to maximize DOF and EL,
while minimizing MEEF. DOF is a more important concern
than EL or MEEF in the production applications of interest to
us. For this reason, our procedure gives paramount impor-
tance to maximizing DOF.

2.2 Problem Formulation

As shown in Fig. 1, when facing a PW-limited layout
clip, one source optimization needs to be conducted. In prac-
tice, obtaining the optimized local source for the layout clip
through source optimization is very time-consuming,
Moreover, the industry only needs the optimized local source
to be a guide for the lithography engineer to determine the
final source in real manufacturing. It is impractical to cost too
much time to get the optimized source through model-based
simulation. Therefore, it is desired to build an optimized
source predictor with the ability to predict sources that can
lead to a good imaging quality in a short time.

As shown in Fig. 2, we could use the machine learning-
based source optimization to replace the local source optimi-
zation process as marked in Fig. 1. This method takes the

PW-limited layout clip as input and gives the optimized local
source as output. The goal of this machine learning-based
method is to predict the optimized local source faster with
satisfying imaging quality.

For source optimization based on machine learning
approach, the training dataset is formed by a set of target
layout pattern clips and the model-based sources. The
machine learning technique could take an input layout clip
as an image. The optimized source leading to the best imag-
ing quality could be seen as its label. Therefore, source opti-
mization based on machine learning can be formulated as an
image reconstruction problem in which the lithography im-
aging process information is stored in the correlation
between input samples and their labels. Related terminolo-
gies are shown as follows.

Definition 5 (source label). Source is represented by the
pixel source values in 2-D grid plane. For simplicity, the
source label for each grid is a number between 0 and 1,
which represents the light intensity.

We then formulate the machine learning-based source
optimization problem as follows.

Problem 1 (machine learning-based source optimiza-
tion). Given the training layout clips with model-based
sources, feature vectors and source labels are extracted and
a regression model is trained to predict the pixelated light
intensity for good imaging quality.

3 Algorithms
In this section, we will explain how our autoencoder-based
learning model works. First, the basic concepts of autoen-
coder are introduced, and then the autoencoder architecture
in our approach is shown. Finally, the whole framework for
source optimization is presented.

3.1 Conventional Autoencoder

Normally, a basic autoencoder consists of an encoder and a
decoder.31 The encoder compresses the input vector x into
hidden representation h, and then h is mapped back to recon-
struct x̂ through the decoder. The mapping functions of
encoder and decoder are as follows:

EQ-TARGET;temp:intralink-;e001;326;147h ¼ sfðWxþ bÞ; (1)

EQ-TARGET;temp:intralink-;e002;326;104x̂ ¼ sgðW 0hþ b 0Þ; (2)

where x is the input vector,W andW 0 represent the encoder
and the decoder weight matrices, respectively, and b and b 0
are the bias vectors. Here x̂ is the output vector. The
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Fig. 2 The comparison of (a) the conventional local source optimiza-
tion and (b) the autoencoder based source optimization.
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autoencoder intends to minimize the difference between x
and x̂ by finding the optimal parameter values for
θ ¼ ðW; b;W 0; b 0Þ. The reconstruction error is evaluated by
squared error function as in Eq. (3).

EQ-TARGET;temp:intralink-;e003;63;708Lðx; θÞ ¼
Xn
i¼1

kxi − x̂ik (3)

3.2 Convolutional Autoencoder

Convolutional autoencoder (CAE) is a special kind of
autoencoder.32 The CAE is similar to the conventional
autoencoder, except that there is no fully connected neural
layers in CAE. Also, the CAE model applies convolutional
layer in the encoder and deconvolutional layer in the
decoder. Owing to the utilization of convolutional and
deconvolutional layers, the CAE only accept 2-D data as the
input vector. The latent representation of k’th feature map is
given as

EQ-TARGET;temp:intralink-;e004;63;544hk ¼ σðx ⊗ Wk þ bkÞ; (4)

where x is the input 2-D vector and Wk and bk represent the
k’th filter weight matrix and the bias matrix, respectively.
Here σ is the activation function and ⊗ denotes the the con-
volution operation. For example, if the size of x is I × I × d,
the size of Wk is F × F × d × o, and the size of the bk is o,
then we could utilize stride s with zero-padding for the filter
and get the output hk with the size of I∕s × I∕s × o. For the
deconvolutional part, the reconstruction x̂ is obtained by the
Eq. (5).

EQ-TARGET;temp:intralink-;e005;63;411x̂k ¼ σðh 0k⊗̂W 0k þ b 0kÞ; (5)

where h 0k is the input vector and W 0k and b 0k represent the
k’th deconvolutional filter weight matrix and the bias matrix,
respectively. The only difference between Eqs. (4) and (5) is
⊗̂, which denotes the deconvolutional operation. We present
an example to explain the details of the deconvolutional
operation as follows:33 the size of h 0k is h × h × o, the size
ofW 0k is F × F × d × I, the size of the bk is d, the stride is s
with zero-padding, and the size of x̂k is I × I × d. The goal is
to increase the feature number from h to I. To do that, we first
insert (s − 1) zeros between two numbers in h 0k and expend
its dimension as the output size (I) with zero-padding, then
we apply W 0k on the new h 0k with stride size as 1 and zero-
padding to conduct convolutional operations. After that, the
size of h 0k⊗̂W 0k is I × I × d, and the feature number is
increased from h to I.

Figure 3 shows an illustration of the convolutional and
deconvolutional layers. In CAE, the encoder applies the con-
volutional layers to decrease the feature number, while the
decoder applies the deconvolutional layers to increase the
feature number. Similar to the conventional autoencoder, the
CAE training intends to minimize the reconstruction error.

U-Net34,35 is a special CAE architecture. For better precise
locations, U-Net includes skip connections to concatenate all
channels at the encoder layers with the mirrored decoder
layers, as shown in Fig. 4. U-Net is mostly suitable for sit-
uations when the input and the output share the location of
prominent edges. For source optimization, though there is no
similar parts between the input layout clips and the output

source images, inner correlations are contained in the lithog-
raphy printing process. Our task for source optimization has
unique characteristics such as limited layout–source training
data and complex layout reconstruction. U-Net is able to deal
with limited training data with good generality and also
propagates more data information with additional feature
channels (such as the skip connections) for reconstruction.
Therefore, in this paper, we utilize U-Net to do the model
training.

The architecture of the U-Net is shown in Fig. 5. The
layers used in the encoder and the decoder are mirrored,
except that we use skip connections by concatenating the
output of each deconvolutional layers with the feature maps
from the encoder at the same level. The mathematical formu-
lation of skip connections is given in Eq. (6).

EQ-TARGET;temp:intralink-;e006;326;305zk ¼
�
xk; if k < q1
yk−q1 ; others

; (6)

Convolutional layer

Deconvolutional layer

Fig. 3 The illustration of convolutional and deconvolutional layers.
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Fig. 4 Comparison of CAE and U-Net.
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where x ∈ Rm×n×q1 represents the output from the convolu-
tional layer, y ∈ Rm×n×q2 represents the output from the
deconvolutional layer, and z ∈ Rm×n×ðq1þq2Þ represents the
output after skip connections between x and y. Here k
denotes the index of their third dimension. For example,
in Fig. 5, the size of both Conv1 output (x) and Deconv1
output (y) is 128 × 128 × 64 (m ¼ n ¼ 128, q1 ¼ q2 ¼ 64).
The skip connection concatenates the channel path of x and
y, and then the size of the input vector (z) for Deconv0
becomes 128 × 128 × 128.

Maxpooling/unmaxpooling may lead to information loss;
therefore, there is no maxpooling or unmaxpooling layers.
We apply only convolutions for downsampling. Owing to its
benefit to fast convergence and nonlinearity to the network, a
rectified linear unit (ReLU) layer is applied for activation fol-
lowing the convolution layer. Since we use 16 hidden layers,
the training network becomes a complicated deep neural net-
work and face a problem called internal covariate shift.
Internal covariate shift occurs since the distribution of each
layer’s input changes with the parameters of the previous
layers during model training. This leads to a slow and hard
training process due to the lower learning rates requirement
and the saturating nonlinearities. To deal with this problem,
we perform the batch normalization for each layer input.
The kernel sizes and the number of kernels are annotated
in the Fig. 5. Each convolutional part consists of one
4 × 4 convolution with stride 2 for downsampling and a fol-
lowing ReLU layer. Detailed configurations are shown in
Table 1.

Moreover, different from the basic autoencoder, which is
usually trained for reconstruction with the objective of mak-
ing the input and the output as similar as possible, our work
intends to get the optimized source for an input layout pat-
tern. With the source label, the autoencoder model training
becomes a supervised learning instead of unsupervised learn-
ing. Therefore, the new cost function for U-Net-based source
optimization is defined as in Eq. (7).

EQ-TARGET;temp:intralink-;e007;63;344LSO ¼
Xn
i¼1

kyi − ŷik; (7)

where n is the number of input samples and vectors yi and ŷi
are the pixelated model-based source and autoencoder-
generated source for i 0th sample, respectively.

3.3 Framework of the Autoencoder-Based Network
for Source Optimization

Typically, machine learning-related techniques, especially
supervised learning, rely on abundant training data for good
prediction performance. In real manufactoring, collecting a
large amount of layout–source pairs is not practical.
Therefore, we propose an autoencoder-based framework for
source optimization with limited number of layout–source
pairs. The flow of our framework is shown in Fig. 6. It con-
sists of the following parts.

3.3.1 Data preparation

For autoencoder model training, we employ the original tar-
get layout clips as the input and the model-based sources as
the output. An example of the layout clip and the model-
based source is shown in Fig. 7. The light intensity of the
source increases as the color changes from blue to red.
During the training, the layout clips and the model-based
sources are taken as images. To fit the training requirement,
we need to preprocess the collected layouts and the sources.
The original layout clip size is 1200 × 1200 nm2, which is
expensive for neural networks to process. We first generate
images with 1200 × 1200 pixels and downscale to 256 × 256
with the nearest-neighbor algorithm. For the preprocess of
the sources, the original model-based source is represented
with 201 × 201 pixels. The pixel values range from 0 to 1,
which represent the light intensity. We convert the source
pixel value array to the grayscale map with the size of
201 × 201. The grayscale map is scaled up to 256 × 256 and
transformed to the pixel value array. Then, we get the source
images with 256 × 256 pixels. We take the grayscale map of
the source for training. After training, the model outputs
grayscale map, and we convert it to light intensity pixel
by pixel with the constraint ranging from 0 to 1. In addition,
we apply data augmentation to increase the training sample
size due to the big network structure and the limited training

Table 1 Neural network configuration.

Encoder Decoder

Layer Kernel size Stride Output node # Layer Kernel size Stride Output node #

Conv1 4 2 128 × 128 × 64 Deconv6 4 2 4 × 4 × 512

Conv2 4 2 64 × 64 × 128 Deconv5 4 2 8 × 8 × 512

Conv3 4 2 32 × 32 × 256 Deconv4 4 2 16 × 16 × 512

Conv4 4 2 16 × 16 × 512 Deconv3 4 2 32 × 32 × 256

Conv5 4 2 8 × 8 × 512 Deconv2 4 2 64 × 64 × 128

Conv6 4 2 4 × 4 × 512 Deconv1 4 2 128 × 128 × 64

Conv7 4 2 2 × 2 × 512 Deconv0 4 2 256 × 256 × 1
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data. For a layout, the optimized source is fourfold symmet-
rical. Therefore, we use one quadrant of the source for model
training; we also generate similar training layout data with
the same source labels. For each training layout clip, we
apply the image rotate and flip transform. The rotated/flipped
layout image shares identical source label with the original
layout image. In addition to the original layout image, we
create five more images: 90-deg rotate, 180-deg rotate,
270-deg rotate, X-flip, an Y-flip. After the training, we get
one quadrant of the source for one input layout clip, and then
we unfold it to get the final optimized source.

3.3.2 Autoencoder pretraining

In this step, we use the collected layout clips to train the
autoencoder. Since we only get limited number of layout–
source pairs, this step intends to pretrain the autoencoder net-
work. Both the input and the output are the layout clips. The
autoencoder is trained for layout clips reconstruction. The
autoencoder is optimized by minimizing the cost function
in Eq. (3). After the pretraining, the autoencoder model is
saved for fine-tuning.

3.3.3 Autoencoder fine-tuning

In the fine-tuning phase, we select representative layout clips
from the collected layouts, with the number of the selected
layout clips being S. Usually S is less than 30, considering
the time cost in real manufacture. We conduct conventional
source optimization to get the optimized sources for those
selected layout clips. And then those layout–source pairs are
fed into the pretrained autoencoder model for another round

of training. we use the layout clip as input and the source as
output for training. During the training, the parameters of the
encoder are fixed and are obtained from the pretraining
phase. We only retrain the decoder in fine-tuning. Through
this step, the autoencoder model is fine-tuned for source opti-
mization by minimizing the cost function in Eq. (7).

4 Experimental Results

4.1 Experimental Setup

This autoencoder neural network is implemented in Python
with Tensorflow 1.12.036 on a Linux server with three 8-core
2.5GHz CPUs, a Nvidia Tesla P100 GPU, and 32 GB
memory. The framework is validated on 14-nm technology
node. The collected layouts include two parts: one is the
regular and simple test pattern (such as head-to-head,
head-to-tip) and the other is scaling down from the 28-nm
industrial benchmarks from ICCAD2012 CAD contest. To
be noted, this contest is for hotspot detection. We only select
the nonhotspot patterns for our experiments. The clips are
randomly split into training and testing samples, so we can
consider that both datasets follow the same distribution. As a
general methodology, the proposed approach will work as
long as the training and testing datasets come from the same
source designs and follow the same distribution. The number
of training samples and testing samples are 441 and 99,
respectively. Tachyon of ASML Brion37 on server with four
Intel Xeon2 GHz octuple-core CPUs, 256 GB memory and 5
tachyon license is used to conduct lithography simulation.
Considering imaging quality and real manufacturing require-
ment, we apply SMO instead of single source optimization to
get the model-based source. The cost function for SMO is as
follows:

EQ-TARGET;temp:intralink-;e008;326;218f ¼
X

kEPEk þ P; (8)

where p is the penalty term. Edge placement error (EPE) is
the difference between lithography contour and design tar-
get. Here

P kEPEk sums EPEs under different conditions,
varying focus, dose, and mask bias. Minimizing the EPE
with different focus, dose, and mask bias will help improve
DOF, EL, and MEEF, respectively. In our experiment,
for SMO, the ranges of focus, dose, and mask bias are
�40 nm, �3%and �0.5 nm, respectively.

Table 2 shows the details of the training configurations
for autoencoder. We apply Adam38 as the gradient descent

Collected 
layouts

Selected 
layouts

Return model
Autoencoder network 

pre-training

Source 
optimization

Model-based 
source

Layout-source 
set

Autoencoder network 
finetuning

Return model

Pre-training:

Finetuning:

Fig. 6 Overall flowchart of autoencoder-based source optimization.

Fig. 7 The illustrations of (a) a layout and (b) a model-based source.
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optimizer for model training; the initial learning rate is
0.0002 and the exponential decay rate (also known as β1)
is 0.5. The batch size is 4, and the total training steps for
pretraining and fine-tuning are 35,000 and 2000, respec-
tively. We also apply a dropout ratio of 0.5 after the decon-
volutional part to avoid overfitting. The number of selected
layout clips for fine-tuning is 20. These selected layout clips
are the representative layout clips, which are selected by
lithography engineers with their experience.

4.2 Performance Evaluation

Optimizing the source with tachyon usually takes 1 to 4 h.
The time it takes depends on the complexity of the layout
patterns. New simulation needs to be conducted when facing
a new layout clip. Training the autoencoder model needs
about 2 h.

Normally, for a basic autoencoder work, the reconstruc-
tion error in Eq. (3) could be used as a score to evaluate the
trained model performance. However, difference between the
model-based source and autoencoder-based source is not
suitable for evaluating the generated source, due to the char-
acteristics of lithography process. To validate our framework,
we compare the imaging performance between the autoen-
coder-based source and the model-based source, with the lat-
ter as the baseline (ratio = 1). The baseline quality metrics
are calculated using SMO-optimized masks (co-optimized

masks). As for SoulNet, we apply the autoencoder-based
source, optimize the mask (doing OPC and inserting SRAF)
under the source, and then get the imaging performance
through simulation. For each testing samples, we consider
its overlapped DOF29 and the worst-case MEEF. The result
analyses presented in this section are based on the 99 testing
samples.

Figure 8 shows the illustrations of the model-based source
and the autoencoder-based source for a layout clip. We uti-
lize the metrics in Sec. 2 to evaluate the imaging perfor-
mance. For a clear comparison, we lists the average DOF,
EL, and MEEF on the testing set in Table 3. The calculation
of the average metrics among all testing samples is
performed to evaluate the general performace of SoulNet.
Moreover, for a fair comparison, we run all the optimization
processes with CPU to compare the optimization time. Since
the training of the autoencoder is a one time thing, we only
consider the running time of prediction for the autoencoder-
related process. The average source optimization time on the
testing set of model-based source optimization and autoen-
coder-based source optimization is also shown in Table 3.
The metrics with better performance are shown in boldface.
In our experiment, we focus on the imaging results on DOF.
Compared to model-based source optimization approach,
autoencoder-based source optimization achieves about
105× speed-up with about 4.67% compromise on DOF. It
enables huge time-saving compared to the conventional
source optimization.

4.3 Evaluation on the Effectiveness of U-Net

For autoencoder network training, we adopt the U-Net. To
evaluate the effectiveness of the U-Net, we conduct a side

Table 2 Training configurations of autoencoder.

Configurations Value

Optimizer Adam38

Initial learning rate 0.0002

β1 (Adam) 0.5

Batch size 4

Dropout rate 0.5

Total training steps for pretraining 35,000

Total training steps for fine-tuning 2000

Number of selected layout clips (S) 20

Fig. 8 Illustrations of (a) a layout clip, (b) a model-based source, and (c) an autoencoder-based source.

Table 3 Performance comparison on DOF, EL, MEEF and optimiza-
tion time.

DOF EL MEEF
Optimization

time

Model-based Average 141.17 0.1158 3.25 3.5 h

Ratio 1 1 1 1

Autoencoder-
based

Average 134.59 0.1110 4.34 0.1237 s

Ratio 0.9533 0.9590 1.3388 9.82E-06
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experiment by canceling all skip connections of the U-Net
and training a CAE model. During the pretraining, the
CAE model only could output the critical main features
of the layout but without the details. The illustrations of the
input layout clip and its CAE output are shown in Fig. 9. It
happens because the 256 × 256 pixelated layout image is too
complex for the CAE architecture to construct a good model.
Therefore, the U-Net performs better than the CAE.

4.4 Imaging Performance Analysis on Different
Layouts

Table 3 gives the average performance evaluation on all test-
ing samples. To get more specific analysis on each testing
clips, Fig. 10 is plotted to show the DOF, EL, and MEEF
variations of every testing clip with autoencoder-based
source, compared to model-based source. The model-based
source is set as the baseline (ratio = 1). The testing layout
clips are sorted with the ascending order of the DOF’s ratio.
In Fig. 10, EL and DOF fluctuate evenly, while MEEF of
most testing layout clips tend to increase. During imaging,
the light intensity and distribution at the diagonal position
are optimized to improve MEEF. Usually there are clear
poles at the diagonal positions, as shown in Fig. 8(b).
However, for most sources generated by the autoencoder,
there are blurry parts at the diagonal positions. It leads to
the increase of MEEF. Moreover, for some test layout clips,

the autoencoder-based source even outperforms the model-
based source. One example is marked with the blue vertical
dash line in Fig. 10. For layout ID 80, the DOF increases
15%, the MEEF decreases 23%, the EL stays the same.
With the autoencoder source, its imaging performance
becomes better, which proves the potential of the autoen-
coder-based source optimization framework.

More specifically, Fig. 11 exhibits specific DOF values
for every testing samples with SoulNet source (also known
as autoencoder-based source) and SMO source (also known
as model-based source). In Fig. 11, the last 20 samples show
tigher DOF than the first 20 samples with SMO sources, and
their DOFs are imporved by SoulNet. This indicates the
potential of SoulNet on achieving advantages in DOF for
samples with tight DOF under model-based source.

5 Conclusion
In this paper, we present the first autoencoder-based source
optimization framework. In addition to utilizing the nature of
autoencoder networks, we also make additional technical
efforts to improve the performance of our work, including
data augmentation and batch normalization. Compared to
conventional model-based source optimization approaches,
our method achieves a fast optimization time with acceptable
compromise on imaging quality. It fits the industry require-
ments, which demands to get the optimized source to guide
the source set in real manufacturing within short time.

Fig. 9 Illustrations of (a) a layout clip, (b) the reconstruction image of CAE model, and (c) the recon-
struction image of U-Net model.

Fig. 10 Performance variation on DOF, EL, and MEEF for each test-
ing samples.

Fig. 11 The DOF comparison between SoulNet source and SMO
source.
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Experimental results demonstrate the effectiveness and effi-
ciency of our framework. Moreover, SoulNet compromises
MEEF, as mentioned in Sec. 4.4, and we will try to improve
MEEF in future works.
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