
Layout Synthesis for Topological Quantum Circuits
with 1D and 2D Architectures

Yibo Lin, Bei Yu, Member, IEEE, Meng Li, David Z. Pan, Fellow, IEEE

Abstract—Quantum computing has raised great interests for
its potential to achieve asymptotic speedup on specific problems.
Current quantum devices suffer from noise which needs robust
and scalable error-correcting schemes. Topological quantum error
correction (TQEC) is among the most promising error-correcting
techniques with exponential suppression of error with linear
increase of space-time complexity. In this paper, we present the
first work to explore space-time optimization between 1D and 2D
architectures for TQEC circuits. We prove the NP-hardness of
the qubit routing problem in the layout synthesis and propose an
efficient algorithm to optimize space-time volumes for both 1D
and 2D qubit architectures with promising experimental results.

Index Terms—Quantum computing, Topological quantum error
correction, TQEC, Layout syntheis

I. INTRODUCTIONS

Quantum computing is able to achieve asymptotic speedup on
specific classes of problems, including data search [1] and cryp-
tosystems [2]. Currently quantum devices are not large enough
to solve difficult problems in real world, where scalability is
one of the critical issues. IBM releases its general quantum
computer based on superconducting qubits via cloud where
users are allowed to access to a five-qubit quantum processor
[3]. It is reported that the processor suffers from significant
noise in the output results [4], indicating the urgent needs of
fault-tolerant circuit design for scalability.

A topological cluster state is a kind of scheme for quan-
tum computing with error correction using specific underlying
structures tiled in a three-dimensional (3D) lattice [5]. Quantum
error-correcting codes based on topological cluster states are
capable of executing scalable quantum computation, with the
probability of failure below 1% (threshold), which is considered
as the state of the art in current technology [6]. Although there
exist some other codes enabling the threshold as high as 3%,
they suffer from high qubit overhead and long-range interac-
tions between qubits, leading to impracticality of implemen-
tation [7]. The topological quantum error correction (TQEC)
scheme is based on the Raussendorf code [8], which is a kind
of error-corrected quantum circuits that operate on information
encoded into topological cluster states. It enables exponential
suppression of error with linear increase of space-time volume
using only interactions between neighboring qubits. Here space
volume means the amount of resources used for quantum

This work is supported in part by The Chinese University of Hong Kong
(CUHK) Direct Grant for Research and the University Graduate Continuing
Fellowship from The University of Texas at Austin.

Y. Lin, M. Li and D. Z. Pan are with The Department of Electrical and
Computer Engineering, The University of Texas at Austin, TX, USA.

B. Yu is with The Department of Computer Science and Engineering, The
Chinese University of Hong Kong, NT, Hong Kong.

computing such as number of qubits, and time volume denotes
the required number of operation steps. The logical abstraction
of TQEC utilizes topological cluster states where a lattice of
physical qubits are entangled into a large graph state for storage
and operations of logical qubits.

To implement a quantum algorithm with TQEC circuits, it
is necessary to go through the several steps in the design
flow such as circuit implementation, decomposition, synthesis,
mapping and technology mapping [7]. Circuit implementation
maps a quantum algorithm to a quantum circuit by decomposing
the algorithm into a specific set of quantum gates, proper
initializations and measurements. This is analogous to the logic
synthesis in classical computing where logic operations are
replaced with primitive logic gates like inverters and AND gates
with some input bits initialized to zeros or ones and the output
results are measured. Then the circuits can be synthesized to
generate geometric description for technology related mapping
in later steps like the physical design stage in digital circuits.
Despite the similarity to classical circuits, due to different
computing schemes and design architectures, various existing
approaches for classical computing fail to work in the quantum
case.

Previous works include circuit decomposition with different
objectives, e.g., minimizing total number of qubits, the depth
of quantum circuits, and different constraints from hardwares
[9]–[16]. Paler et al. [17] propose a compact representation
of geometric description and the first automatic synthesis of
geometric description from a circuit netlist, which we refer
to as layout synthesis. Then they further propose a tool that
incorporates decomposition of quantum circuits and synthesis of
geometric description for 1D (one-dimensional) arrangement of
qubits where all the qubits are placed along a 1D line, aligning
next to each other [6], as shown in Fig. 1(a). However, their
approaches focus on generating feasible geometric descriptions
without considering the optimization of space-time volumes,
which may result in inefficiency in completing all operations
of the circuits, such as large latency. Yamashita [18] solves 1D
qubit and gate ordering problem by searching for maximum
cliques in a graph model. Fowler et al. identify some rules
for topological conversion to simplify the geometric description
with manual efforts [19]. The geometric description of TQEC
circuits can be easily mapped to physical hardware in polyno-
mial time [20].

Although there are plenty of previous works on logic-level
optimization of quantum operations, qubit placement and rout-
ing for linear nearest neighbor architectures [21]–[30], they as-
sume the availability of SWAP gates for long-range interactions

q1

q2

q3

q4

G2

G1

G3

(a)

q1
q2

q3
q4

G2

G1

G3

(b)

Fig. 1: Examples of (a) 1D and (b) 2D implementations of
quantum circuits where qubits are arranged in 1D line or 2D
space [25]. Squares labeled with “G” represent quantum gates.

between qubits which is different from TQEC-related physical
geometry. SWAP gates are used to bring qubits originally far
away from each other into physically adjacent locations such
that other functional gates involving both qubits can be applied.
For example in Fig. 1(a), we can insert a SWAP gate to swaps q2
and q3 after gate G1 such that the gate G2 involving q1 and q3
can be implemented in linear nearest neighboring architectures.
These works have proposed approaches to minimize SWAP
gates in quantum circuits for not only 1D qubit arrangement,
but also two-dimensional (2D) structure where qubits are placed
in a 2D grids, as shown in Fig. 1(b).

In this work, we focus on the layout synthesis of TQEC
circuits for general multiple-layer (1D and 2D) arrangement
of qubits with space-time volume optimization where qubits
can be placed either in a 2D space or a 1D line from input
configurations. Our major contributions are summarized as
follows.
• We propose the first systematic study on automatic layout

synthesis of TQEC circuits with 1D and 2D architectures.
• We prove the NP-hardness of the qubit routing problem.
• We design an effective way to generate routing solutions

for single net utilizing the unique structure of the multiple-
layer architecture and further propose an efficient qubit
routing algorithm for the entire circuit.

• We demonstrate the effectiveness of our algorithm in
space-time volume optimization in the experimental re-
sults.

The rest of the this paper is organized as follows. Section II
introduces basic concepts in TQEC and the problem formu-
lation. Section III describes the algorithms for qubit routing
to minimize space-time volumes in geometries. Then the algo-
rithms are validated by experimental results in Section IV and
Section V concludes the paper.

II. PRELIMINARIES

In this section, we will briefly introduce basic concepts in
quantum computing and components in TQEC circuits followed
by problem formulation.

A. Qubits, Initialization, Measurement and Gates
In quantum computing, information is passed by quantum bits
(qubits) which can represent 0, 1, or superpositions of both
[30]. The quantum state to hold the information is a unit vector
usually represented with bra-ket notation shown in Fig. 2,

|ψ〉 = α |0〉+ β |1〉 , (1)

|0〉

|1〉 |+〉 = |0〉+|1〉√
2

|−〉 = |0〉−|1〉√
2

|ψ〉

Fig. 2: Quantum state and different bases (|0〉 and |1〉 for
Z-basis and |+〉 and |−〉 for X-basis).

where |0〉 and |1〉 are orthonormal basis vectors. The probabil-
ity of |0〉 is |α|2, the probability of |1〉 is |β|2 and |α|2+ |β|2 =
1. The qubit state can be represented in different bases. Fig. 2
shows two kinds of bases, Z-basis using |0〉 and |1〉 as the basis
vectors, and X-basis using |+〉 and |−〉 as the basis vectors, etc.
The above quantum state can be written in X-basis as follows,

|ψ〉 =
α+ β√

2
|+〉+

α− β√
2
|−〉 . (2)

To perform computation on qubits, initialization and measure-
ment on the state of qubits are necessary like that in classical
computing for classical bits. Initialization and measurement
have to be performed with specific basis, e.g., Z-basis or
X-basis. Initialization usually adopts the same mechanism as
measurement because quantum states collapse to the measuring
basis when measurement is performed [31]. For example,
measurement on Z-basis can initialize the qubit to |0〉 state
and measurement on X-basis can initialize the qubit to |+〉.

The computation is then realized by quantum operations
which perform transformations of quantum states of qubits,
e.g., rotation of vector |ψ〉 in Fig. 2, where quantum gates are
necessary to implement quantum operations for computation.
It might be difficult to implement any quantum operation as a
single quantum gate, while it is possible to come up with a finite
set of primitive quantum gates that can realize any quantum
operation by using them as building blocks, which is usually
referred to as a universal set of gates, like the logic gates in
classical digital circuits. The TQEC circuits use the universal set
of gates {CNOT, V, P, T} as the primitive gates to implement
complicated operations [6], where the primitive gates V, P, T
are used for single qubit rotation and CNOT gate involves
operations for multiple qubits. CNOT gate usually contains one
control qubit and one target qubit and its functionality can
be briefly explained as the control qubit determines whether
or not to apply NOT operation on the target qubit, though
the mathematics behind are more complicated. If we view the
quantum state of a qubit as a vector, then the V, P, T gates rotate
the vector in the space with various angles. These rotation gates
can be implemented by teleportation based schemes with CNOT
gates and ancilla qubits initialized to |A〉 and |Y 〉 [6],

|A〉 =
1√
2

(|0〉+ ei
π
4 |1〉), (3a)

|Y 〉 =
1√
2

(|0〉+ i |1〉), (3b)

where |A〉 and |Y 〉 are orthonormal basis vectors like |0〉 and
|1〉 in Z-basis. Therefore, TQEC circuits consist of CNOT

(a) (b) (c) (d) (e) (f)

Fig. 3: Geometric components for measurement and ini-
tialization qubits. White cuboids denote primal defects and
brown cubuids denote dual defects. (a) (e) Z-basis measurement
and |0〉 initialization. (b) (d) X-basis measurement and |+〉
initialization. (c) State injection for |A〉 or |Y 〉 initialization. (f)
Generalized pin representation for primal defects where the red
cube generalizes the operation of initialization or measurement
[6].

gates and proper initialization and measurement of qubits.

B. Primal and Dual Defects

The quantum information in TQEC is encoded into topological
cluster states which have a lattice structure where the vertices
are physical qubits. The removal of specific vertices from the
lattice abstracts the state, where the results of removal are
defined as defects [6]. The defects are generally represented
by cuboids to describe the removal of vertices inside. TQEC
circuits introduce a parallel pair of defects to represent a logical
qubit. The propagation of defects behaves as the propagation
of quantum states.

Fig. 3 shows the components for initialization and measure-
ment in TQEC circuits [6]. We define the white cuboids as
primal defects and brown cuboids as dual defects. Detailed
description and explanation for the representation of primal
and dual defects can be found in previous work [6], [8],
[31]. The major difference between primal and dual defects
lies in the basis (Z-basis and X-basis) used for initialization
and measurement. We only need to know the functionality
of the defects and how TQEC circuits are composed with
defects for layout synthesis. As aforementioned, measurement
on Z-basis initializes the qubit to |0〉 state and measurement
on X-basis initializes the qubit to |+〉. If the ends of two
primal defects are joined like Fig. 3(a), Z-basis measurement
is performed, while joining the ends of two dual defects means
X-basis measurement as shown in Fig. 3(d). If the ends of
two parallel defects are left open like Fig. 3(b) and Fig. 3(e),
X-basis measurement is performed for primal defects and Z-
basis measurement is performed for dual qubits. State injection
where two pyramid-shaped defects join one lattice vertex is
adopted for the initialization of |A〉 and |Y 〉 for ancilla shown
as in Fig. 3(c). Since we focus on the generation of geometric
description, the qubit initialization and measurement of inputs
and outputs are abstracted to pins (red cube in Fig. 3(f)), which
serve as placeholders for proper initialization and measurement
on specific bases.

Fig. 4(b) implements a primal-primal CNOT gate [6], [8],
meaning that qubits q1 and q2 are encoded to primal defects
at both input and output. The ancilla dual defects braid around
primal defects to form a single-target CNOT gate. Here we use
braiding to describe a path going through the face of a circle
like a knot. For example, there are three braidings between

ci co

ti to

q1 :

q2 :

(a)

ci co

ti to

(b)

ci co

ti1 to1

ti2 to2

q1 :

q2 :

q3 :

(c)

ci co

ti1 to1

ti2 to2

(d)

Fig. 4: (a) A CNOT gate with q1 as control qubit and q2 as
target qubit. (b) The primal-primal implementation of CNOT
gate where dual defects (brown) braid around primal defects
(white) and red cubes represent inputs and outputs [8]. (c) A
multiple-target CNOT gate with q1 as control qubit and q2 and
q3 as target qubits. (d) Geometric description of the multiple-
target CNOT gate.

primal and dual defects in Fig. 4(b). Be aware that Z-basis
measurement is performed to the primal defects for ci and Z-
basis initialization is performed to the primal defects for co.
This implementation is adopted to synthesize CNOT gates in
TQEC circuits. The CNOT gate can also support more than
one target, i.e., multiple-target CNOT gate with one control
and multiple targets in Fig. 4(d).

C. Problem Formulation
With different configurations of qubit positions and geometry,
the space-time volumes of TQEC circuits vary. Fig. 5 gives the
geometries of the same TQEC circuit with both 1D and 2D
qubit arrangement. Please recall the 1D and 2D architectures
in Fig. 1. In Fig. 5(a), one CNOT gate connects qubits q1 and
q3 and the other connects qubits q2 and q4. The two CNOT
gates have the same logic level because their control and target
signals are independent, which means two logic operations
can be performed simultaneously. The width (w) and height
(h) axes in Fig. 5(b) denote the space dimensions, while the
depth (d) axis represents the temporal/time dimension. Fig. 5(b)
implements two CNOT gates using depth of 2 and Fig. 5(c)
implements them with depth of 1 by stacking gates in parallel
along h axis. With similar space volumes of Figs. 5(b) and 5(c),
two arrangements end up with different time volumes, as one
can share depth steps between gates of the same logic levels.
The space dimensions are usually constrained by the settings

of quantum devices. In this work, we assume the height for
qubit arrangement is given as the number of layers such that
qubits can be arranged according to the space dimensions and
geometric descriptions can be generated according to the circuit
netlist.

Problem 1 (Layout synthesis for TQEC circuits). Given a
TQEC circuit netlist and configuration of space dimensions,
e.g., width and height, and qubit arrangement, we generate
geometric descriptions in qubit routing with minimum depth
(time volume).

Width can be derived from given height and number of qubits
with compact arrangement. Since all single-qubit rotation gates

q1

q2

q3

q4

(a)

q1
q2
q3
q4

(b)

q1

q2

q3

q4

(c)

Fig. 5: Example of (a) circuit consisting of two CNOT gates
with (b) 1D (single-layer) qubit arrangement with depth of 2
and (c) 2D (two-layer) qubit arrangement with depth of 1. Axis
d denotes the depth axis. Axis w and h are axes for space
volumes.

c1

c2

t

T

T † T † P

H T † T T † T H

Fig. 6: Example of Toffoli gate implemented by a sequence of
CNOT, T , T †, P and H gates [32]. Its TQEC implementation
where T , T †, P and H gates are implemented using teleporta-
tions can been seen in Fig. 20 of [6].

and Toffoli gates in TQEC circuits can be decomposed to CNOT
gates and ancillas in the preprocessing stage [6], we assume
there are only CNOT gates in the circuits when describing
the algorithms for simplicity. Fig. 6 shows the decomposition
of Toffoli gate, whose geometry can be found in Fig. 20 of
[6]. The decomposition stage has also considered to leave
placeholders of distillation circuits for initialization for ancillas,
we do not consider the synthesis of distillation boxes in this
work.

III. LAYOUT SYNTHESIS ALGORITHMS

In this section, we explain the framework to generate geometric
descriptions, which consists of two phases, i.e., qubit placement
and routing. Qubits are placed to grids according to space
dimensions, while the geometric descriptions are generated
according to qubit arrangement and circuit netlist.

A. Stick Diagram Representations
Before introducing details on qubit placement and routing, we
introduce simplified stick diagram representations for routing of
a net from the geometric descriptions shown in Fig. 3 and Fig. 5.
The stick diagram representation has equivalent 3D and 2D
versions. Since in our qubit architecture logical qubits propagate
in pairs of primal defects, we only need to determine the routing
of dual defects and the braiding with qubits for construction
of CNOT gates. In the first step, a 3D routing grid system
is introduced with two grids in depth axis, shown as Fig. 7(c),

q1

q2

q3

(a) (b)

q1

q2 q3

(c)

q1

q2 q3

(d) (e)

0

1

2

3

4

1 2 3 4

q1

q2 q3

(f) (g)

Fig. 7: (a) Example of a CNOT gate with two targets and (b)
its implementation with one depth step and qubits placed in 2D
space and (c) corresponding 3D stick diagram and (d) its front
view and (e) its back view. Corresponding stick diagram: (e)
front face and (f) back face.

where grids are available for dual defects. The primal defects for
a qubit appear in the centers of vertically neighboring squares.
Both primal and dual defects are simplified from cuboids to
lines. For multiple nets at different depth steps, we can cascade
multiple grid systems together along the depth axis, as shown
in Fig. 9(b).

A 3D stick diagram of single depth step can be divided into
two faces, front face and back face. Fig. 7(d) and Fig. 7(e) give
a front view and back view of Fig. 7(c). A 2D stick diagram
is derived from further simplification of each pair of primal
qubits in the front and back view to a circle, shown in Fig. 7(f)
and Fig. 7(g). Each circle is labeled with its corresponding
qubit in the stick diagram for the front face. We mark the
qubits of control signals of nets to light green and target signals
are marked black. The routing segments are also divided into
routing in front face and routing in back face, where the cross
marks denote the segments connecting two faces. For routing
of a net, we draw both front and back faces with only qubits in
the net and selected routing segments. In other words, qubits
not in the net are usually not explicitly drawn for brevity. In
qubit placement, we only draw the front face of a single grid
system to show the positions of all qubits.

B. Qubit Placement
Previous work on TQEC assumes 1D arrangement of qubits [6],
[17]–[20] shown as Fig. 8(a). We try to enable 2D arrangement
of qubits with multiple-layer architecture, shown as Fig. 8(b)
with an example of two layers. We allow one horizontal track
for routing between neighboring layers, like the horizontal
gridlines at height 0, 2, and 4 in Fig. 7(f); as a result, qubits have
to be placed in odd-height grids (index starts from zero). The
architecture is flexible and we can always insert more routing
tracks between neighboring layers for more routing resources.

To tackle Problem 1, both qubit placement and routing are
important issues. The quality of placement may impact the
minimum total depth achieved from routing. In other words,
qubit placement can be optimized to reduce total depth after

(a) (b)

Fig. 8: (a) Example of single-layer qubit arrangement like that
in Fig. 5(b) (view from left). (b) Two-layer qubit arrangement
like that in Fig. 5(c).

routing. Various previous work for qubit placement focuses on
minimizing the SWAP gates in linear nearest neighbor architec-
tures [21]–[27]. Insertion of each SWAP gate is assumed to have
constant overhead to the space-time volumes, so optimizing
the SWAP gates helps reduce the resource consumption and
total depth. In TQEC, the long-range interaction between two
qubits can be achieved by directly routing a CNOT gate
properly to the corresponding qubits instead of inserting SWAP
gates. However, previous approaches for placement in linear
nearest neighbor architectures may be adapted to minimize the
objective here, which is left for future work. In this work, we
take the positions of qubits in the grid system from input.

C. Qubit Routing
In this section, we explain two different routing strategies for
qubits, i.e., a mixed integer linear programming (MILP) scheme
and an approximation approach by generating candidate routing
solutions. Since nets of different logic levels are independent in
terms of routing resources, the routing process can be conducted
at each individual logic level. For convenience, the nets in
qubit routing always belong to one logic level if not specially
mentioned in this section.

Considering the structure of CNOT gate in Fig. 7, the dual
defects actually form a circle that covers all qubits in the net.
We denote front path as a path in the front face, back path as
a path in the back face. We also use the word cover to indicate
a path visits a qubit and occupies the gridline where the qubit
locates. Following [6] one CNOT gate is implemented in one
depth step. To simplify the problem, we assume the routing
circle of a net consists of a front path, a back path, and two
segments connecting the front and back faces. To reduce the
solution space, we add an additional constraint for braiding at
target qubits that the target qubits are only covered by the front
path, as shown in Fig. 7(f).

Problem 2 (Qubit Routing). Given a net set N where each
net has a single control qubit and one or more target qubits,
together with a 3D rectilinear grid system G where qubits are
only located in the center of odd-height horizontal gridlines,
generate dual defects for all the nets on G (in other words,
route all the nets) with minimum depth step, while subjecting
to following constraints.

1) Segments of dual defects run on grids.
2) Dual defects form a circle for each net after visiting each

grid at most once, which can be split into a front path
and a back path.

3) The circle has to visit the control qubit in both faces; e.g.,
in Fig. 7(f) and Fig. 7(g), q1 is covered in both faces.

q1

q2

q3

q4

q5

Logic
level 0

Logic
level 1

(a) (b)

d = 0

q1

q2 q3

q4

q5

(c)
d = 0

(d)
d = 1

q1

q2 q3

q4

q5

(e)
d = 1

(f)

Fig. 9: (a) Example of a CNOT gate with two logic levels
and (b) 3D stick diagram of its corresponding routing solution
in two depth steps. Stick diagram at depth step 0: (c) front face
and (d) back face. Stick diagram at depth step 1: (e) front face
and (d) back face.

4) The circle has to cover the grids of the target qubits in
the front face, while in the back face, they must not be
covered, like q2 and q3 in Fig. 7(f) and Fig. 7(g).

5) Circles of different nets must be vertex-disjoint.

Theorem 1. Qubit routing in Problem 2 is NP-hard.

The proof is shown in Appendix.

1) Route Multiple Nets by MILP
A trivial solution to route nets can be constructed by routing

one net at one depth step, with |N | depth steps in total, which
is the maximum depth. However, we can merge some nets into
one depth step if their routing solutions do not have any conflict
(resource sharing). The example in Fig. 5(c) routes two nets in
one depth step. Hence the objective is to minimize the depth
required to route all nets, i.e., minimize the latency.

Some notations are explained in TABLE I. For a graph G, we
use G− v to represent the subgraph after G excludes vertex v,
i.e., (V (G) \ {v}, {uw|uw ∈ E(G) and u,w ∈ V (G) \ {v}}).
We use G −H to represent the subgraph after G excludes its
subgraph H , i.e., (V (G) \ V (H), {uw|uw ∈ E(G) and u,w ∈
V (G) \ V (H)}).

We split the formulation into different parts for easier expla-
nation. The objective is to minimize the depth steps D required,

min D. (4)

Now we explain the constraints. For a net n, |N | binary
variables bn,d, are introduced to represent in which depth step it
is routed. For brevity in the following discussion, the range of
depth d always satisfy 1 ≤ d ≤ |N | if not specially mentioned.
The number of depth steps required is equal to the maximum
depth step selected among all nets, so we can compute the final
depth D with Eq. (5a). The constraint in Eq. (5b) ensures only

one depth step is selected.
|N |∑
d=1

d · bn,d ≤ D,∀n ∈ N, (5a)

|N |∑
d=1

bn,d = 1,∀n ∈ N. (5b)

We introduce the concept of degree of vertex v as the number
of selected gridlines connecting to vertex v in the grid system.
The binary variable bn,dv is introduced to represent the degree
of vertex v in the grid system at depth step d for net n. The
binary variable bn,de denotes whether edge e at depth step d is
selected by net n in its routing solution. As the routing for a
net is a circle, the degree of any vertex on the path is 2, while
the degree of any other vertex is 0,∑

e∈E(v)

bn,de = 2bn,dv ,∀v ∈ V, n ∈ N. (6)

Although Eq. (6) ensures the selected gridlines always form
cycles, it fails to guarantee that only a single cycle is formed for
one net, since the constraint will also be satisfied for multiple
disjoint cycles. Thus, the challenge comes from the exclusion
of solutions with multiple disjoint cycles formed for one net.
Considering a solution contains multiple disjoint cycles for one
net, if we remove any vertex from the solution, the rest selected
gridlines still contain at least one cycle. Therefore, if we are
able to ensure that after removing an arbitrary vertex, the rest
selected gridlines do not form any cycle, but a tree structure
instead, it is possible to guarantee a single cycle for one net.

We employ the difference of the maximum average degree
between a cycle and a tree to forbid multiple disjoint cycles. The
average degree of a graph Gn is defined as ad(Gn) = 2|E(Gn)|

|V Gn| ,
and the maximum average degree is defined as,

mad(G) = max
H⊆Gn

ad(H), (7)

where H is any subgraph of Gn. Intuitively, maximum average
degree denotes the densest part of the graph and it is no smaller
than the average degree of any subgraph of Gn. It is observed
that the maximum average degree of a tree is exactly its average
degree 2(|V (Gn)|−1)

|V (Gn)| , while any cycle results in the average
degree of a graph no smaller than 2 [33]. If we remove an
arbitrary vertex v∗ that has to be covered by the circle, then
the remained path must not form any cycle.

The maximum average degree is computed by forcing each
selected edge to send a flow of 2 to its vertices and each
vertex only receives non-negative flow [33]. Specifically in this
problem, supposing a graph Gn ⊆ G with edge set E(Gn)
and vertex set V (Gn) is selected as the routing solution for net
n, its |E(Gn)| edges will send flow of 2|E(Gn)| to |V (Gn)|
vertices. Note that any vertex v ∈ V (G−Gn) will not receive
any flow since all the edges connect to v send zero flow. Then at
least one of the |V (Gn)| vertices receive a flow no smaller than
2|E(Gn)|
|V (Gn)| , which implies that the maximum average degree can

be obtained by minimizing the maximum flow received by any
vertex. If Gn contains cycles, even the minimum value of the
maximum flow received by a vertex is no smaller than 2. We
can ensure acyclic nature of Gn by constraining the amount

TABLE I: Notations used in Layout Synthesis
G = (V,E) 3D grid graph (Fig. 9(b)) for one logic level where

V is the set of vertices and E is the set of edges.
N The set of nets to be routed in one logic level.
S The set of control qubits of nets in N .
T The set of target qubits of nets in N .
Q The set of qubit lines.

ef , eb An edge in front face (ef) and an edge in back face
(eb) with the same coordinates in space dimensions
of a grid system.

E(v) Set of edges connected with vertex v. If v is a qubit,
it means the set of edges containing the qubit.

of flow received by any vertex is smaller than 2. In linear
programming, it is hard to constrain an equation to be “smaller
than (<)” a value, because only “smaller than or equal to (≤)”
is allowed. The aforementioned maximum average degree of a
tree is smaller than or equal to 2(|V (Gn)|−1)

|V (Gn)| ≤ 2 − 2
|V (G)| as

|V (Gn)| ≤ |V (G)|. Thus we can constrain the flow of each
vertex to be smaller than or equal to the upper bound as shown
in Eq. (8b), with two continuous non-negative variables xn,de,u

and xn,de,v introduced for edge e at depth d of net n, denoting
the flows sent to vertices u and v, respectively. Eq. (8a) ensures
each selected edge sends a flow of 2. Eq. (8c) restricts each
vertex only receives non-negative flow from edges.

xn,de,u + xn,de,v = 2bn,de ,∀e ∈ E(G− v∗), n ∈ N, (8a)∑
e∈E(v)

xn,de,v ≤ 2− 2

|V (G)| ,∀v ∈ V (G− v∗), n ∈ N, (8b)

xn,de,u , x
n,d
e,v ≥ 0,∀e ∈ E(G− v∗), n ∈ N. (8c)

Any vertex of the edges containing the control qubit of the net
can serve as v∗ since the path has to visit it.

Free of conflict between any solution of different nets is
ensured by Eq. (9a). Eq. (9b) makes sure the path goes through
the control qubit of the net and Eq. (9c) guarantees that path
braids with target qubits. Qubits not in the net are avoided by
Eq. (9d).∑

n∈N
bn,dv = 1,∀v ∈ V, (9a)

bn,def
= bn,deb

= bn,d,∀ef , eb ∈ E(S(n)), n ∈ N, (9b)

bn,def
= bn,d, b

n,d
eb

= 0,∀ef , eb ∈ E(T (n)), n ∈ N, (9c)

bn,de = 0,∀e ∈ (E(Q) \ E(S(n)) \ E(T (n))), n ∈ N. (9d)

To sum up, Eqs. (4), (5), (6), (8), and (9) compose the
full MILP formulation, where bn,de , bn,dv , and bn,d are binary
variables while xn,de,u and xn,de,v are continuous. We can see that
the MILP formulation is very expensive because its number of
binary variables is related to the number of nets as well as the
total edges and vertices in the grid system. Supposing that the
total numbers of edges and vertices in the system are linear to
total amount of qubits, the number of binary variables is in the
order of |N |2|Q| due to the existence of bn,de and bn,dv , which
is not affordable for large circuits.

2) Candidate Routing Solution Generation for Single Net
Although qubit routing for multiple nets is difficult, it is

possible to generate feasible routing solutions with specific

patterns for any net due to the unique structure of multiple-
layer architecture. Since the qubits only appear at odd-height
grids, a zig-zag line can be generated by covering all the even
height grids such that all qubits in the net is one grid away from
the line, as shown in Fig. 10(a) and Fig. 10(b). The zig-zag line
is the guideline for generating a feasible solution.

The process of generating the routing in front face is illus-
trated in Fig. 10(b) and Fig. 10(c), which can be summarized
as follows.
• Given a guideline, mark all the grids covered by the

guideline to 1 (selected) and others to 0 (not selected);
• Detect the positions of qubits in the net and mark the

squares above qubits, shown as blue squares in Fig. 10(b);
• For each square, flip the selection of its four grids and it

yields the routing for front face, shown as Fig. 10(c).
The routing in the back face can be generated in a similar way
by only flipping the square of the control qubit in the net. Two
ending points of the guideline, which are shown as cross marks
in Fig. 10(c) and Fig. 10(d), connect the front and back face to
form the closed path.

According to different directions, there are four different
guidelines for a net, shown as Fig. 10(e) to Fig. 10(h), which
can generate four different routing solutions with the procedure
(slight variation) mentioned above. However, the guidelines
may not be compact enough to generate compact routing
solutions. The example in Fig. 10(c) occupies a 3× 5 grid box
with many redundant segments. The compactness of a routing
solution is determined by that of the provided guideline. There-
fore, it is necessary to compress the guideline for generating
compact routing solutions. Here we propose several ways to
optimize a guideline.
• Generating the guidelines within the minimum grid box

that covers all the qubits results in more compact solutions,
shown as the dashed box in Fig. 11(a).

• Each vertical segment can be shifted by checking the posi-
tions of qubits below and above it to remove unnecessary
horizontal segments in the middle, shown as Fig. 11(b).

• In the top and bottom of each guideline, it is possible to
shorten dangling segments by checking the positions of
qubits below or above it, shown as Fig. 11(c).

These optimization techniques only need to locally check the
positions of qubits. Fig. 11(d) shows an example for the routing
in front face generated from the optimized guideline, which is
more compact that that in Fig. 10(c).

3) Candidate Routing Solution Assignment
With four candidate solutions for each net from Sec-

tion III-C2, we need to select one solution for each net such
that all the nets are routed in minimum total depth.

Problem 3 (Routing solution assignment). Given a net set N
and four candidate routing solutions for each net in a logic
level, assign one candidate solution and depth step to each net
such that no routing solutions share the same resources (no
conflict) and the total depth in this logic level is minimized.

Fig. 12 gives an example of assignment problem of two nets,
which needs at most two depth steps. Since four candidate
solutions are generated for each net in Section III-C2, each net

h

w
(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10: (a) Example of net where control qubit is marked by
green dot and target qubits are marked by black dots and (b)
a guideline for generating routing solution and (c) generated
front face and (d) back face. Four possible guidelines for a net
are shown in (e) (f) (g) (h).

(a) (b) (c) (d)

Fig. 11: Example of optimization for guidelines: (a) extract
minimum bounding box that covers all qubits in the net (verti-
cally extend by one grid for different candidates) and (b) shift
vertical segments to remove redundant horizontal segments and
(c) shorten dangling ending segments. (d) Example of generated
routing in front face from the guideline in (b).

corresponds to 4×2 = 8 numbered vertices in the graph, where
number within each vertex denotes the candidate solution. All
the vertices for a net is encompassed by a gray circle and
its subgraph forms a clique because only one of them can be
selected. The first row of vertices denote the net is routed in
depth 1, while the second row of vertices denote the net is
routed in depth 2. An edge is inserted between two vertices
when the corresponding routing solution cannot be both selected
due to conflicts. Vertices of different depth between different
nets are not connected since they do not cause any conflict.
We need to select one vertex for each net without any conflict
while minimize the maximum depth of selected vertices.

With the graph model in Fig. 12, Problem 3 can be for-
mulated into a variation of maximum weighted independent set
(MWIS) problem where each vertex is weighted by the negative
value of its depth. Any independent set is able to derive a legal
routing solution for nets. Unlike classic MWIS problem that
maximizes the total weight, the objective here is to find an
independent set to maximize the minimum weight of vertices

1

1

2 3 4

2 3 4

1

1

2 3 4

2 3 4

Net a Net b

Depth 1

Depth 2
Clique Clique

Fig. 12: Example of conflict graph for candidate routing
solution assignment. The vertices within each gray circle form
a clique and the connections are not drawn for brevity.

Algorithm 1 Candidate Qubit Routing Solution Assignment

Require: A set of nets N and candidate routing solutions.
Ensure: Assign one candidate solution to each net with mini-

mized maximum depth.
1: Define M as a large number;
2: Define c as a candidate solution;
3: Construct net conflict graph;
4: while there are unprocessed nets do
5: Find unprocessed net n with maximum degree;
6: for each candidate solution c of net n do
7: if c has conflict with any processed net then
8: c.cost←∞;
9: else

10: nc ← number of conflicts with candidate
11: solutions of other unprocessed nets;
12: c.cost← c.depth ·M + nc;
13: end if
14: end for
15: Assign candidate solution with minimum cost to net n;
16: end while

in the set.
While MWIS problem is well-known NP-hard, we solve it

with a fast heuristic approach that tries to assign routing solution
to the net with maximum degree in the conflict graph first
in each iteration. The details are shown in Algorithm 1. We
first construct a net conflict graph in line 3 where vertices
correspond to nets and two nets are connected if any of their
candidate solutions have conflicts. At the beginning of each
iteration, we search for the net with maximum degree that
has not been processed yet. All candidate solutions of the net
are traversed to compute costs by checking the conflicts with
candidate solutions of other nets in lines 6 to 14. Any candidate
solution that has conflict with processed nets is assigned to
infinity cost. Otherwise, the cost function in line 12 ensures
that candidate solution with smaller depth and fewer conflicts
with unprocessed nets have higher priority to be selected. Then
the solution with minimum cost is assigned to the net in line
15. In the worst case, the algorithm will route each net at each
individual depth step resulting in an overall depth of |N |.

IV. EXPERIMENTAL RESULTS

Our algorithm was implemented in C++ and tested on an eight-
core 3.40 GHz Linux server with 32 GB RAM. We experiment
on two sets of benchmarks, RevLib [34] and synthetic bench-
marks. The Toffoli gates in RevLib benchmarks are decomposed
to single-target CNOT gates and ancillas by [6]. In TABLE II
and TABLE III, the number of qubits is denoted by “|Q|”, the
number of nets (CNOT gates) is denoted by “|N |”, and the
maximum number of pins (including control and targets) for
multiple-target CNOT gates is shown as “MT ”. The RevLib
benchmarks contain circuits with |Q| from 131 to 3753 and
|N | from 168 to 4938 and only single-target CNOT gates are
used. Qubits are placed according to the order of input netlists.
The synthetic benchmarks are generated with various number
of qubits |Q| from 10 to 1000, number of nets |N | from 10 to
10411, and multiple-target CNOT gates with MT from 2 to 10,

shown in the first three columns TABLE II. Given number of
qubits, number of CNOT gates, and maximum number of pins
for multiple-target CNOT gates as input, we randomly select
the pins for a CNOT gate every time until all the qubits are
covered by at least one CNOT gate. Gurobi [35] is used as the
ILP solver.

The framework supports arbitrary configuration of layers for
the TQEC system. TABLE II and TABLE III show the results
of final depth (“D”) and runtime (“T ”) for single layer and
4 layers. The MILP based qubit routing in Section III-C1 is
shown as “MILP” and the algorithm based on candidate routing
solution assignment in Section III-C3 is denoted as “CRSA”.
We set the maximum runtime of MILP to 10000 seconds and
“NA” indicates that the program fails to finish within given
time.

In TABLE II, MILP only returns solutions for some small
benchmarks with only 10 qubits, while the runtime is not
scalable enough to solve all benchmarks. Among those bench-
marks, CRSA gives similar depth in much more reasonable
time. Without depth optimization, each net uses one depth
step and thus the overall depth is the same as the number
of nets |N |, which we use as the baseline for comparison
of overall depth. From the column “|N |” and column “D”
under CRSA, the baseline ends up to be 2.26 times of the
overall depth for 1D architecture and 2.09 times of that for
2D architecture with 4 layers. TABLE III shows the results for
RevLib benchmarks. CRSA achieves 1.76 times smaller depth
for both 1D and 2D architectures with efficient generation of
layout. It can also be seen that small benchmarks with fewer
than 100 qubits generally have limited benefits from depth opti-
mization, while for the rest, more than 50% reduction of overall
depth from the number of nets |N | for synthetic benchmarks
and 30% reduction for RevLib benchmarks are possible. As
aforementioned, the depth measures the time volume of TQEC
circuits and smaller depth contributes to smaller latency to the
system. The results demonstrate that the proposed approach is
able to achieve significantly smaller latency without introducing
additional resources like space volumes.

We also observe that the 2D CRSA has on average smaller
runtime than 1D CRSA. The major difference in runtime comes
from the conflict graph construction of Algorithm 1. The reason
lies in the grid-based check for conflicts of any pair of candidate
routing solutions where early exit is possible once a conflict is
detected. For example in benchmark b14, the conflict graph
for 2D architecture ends up with more entries than 1D in the
experiment, which means early exit happens more often in 2D
than that in 1D. In addition, 2D arrangement uses fewer grids
than 1D with similar overall area of grids, e.g., 30% fewer grid
vertices and 20% fewer gridlines in this benchmark, which is
also a reason for smaller runtime.

V. CONCLUSION

We propose a framework on multiple-layer layout synthesis of
TQEC circuits by enabling 1D and 2D arrangement of qubits.
We prove the NP-hardness of the qubit routing problem and pro-
pose an efficient algorithm to optimize space-time volumes. For
TQEC circuits further exploration of qubit placement, automatic
exploration of best number of layers for various designs, and

TABLE II: Comparison of different configurations and algorithms

Design
1D Architecture - Single layer 2D Architecture - 4 layers

MILP CRSA MILP CRSA
Name |Q| |N | MT D T (s) D T (s) D T (s) D T (s)

b1 10 10 5 10 0.66 10 0.00 9 0.37 10 0.00
b2 10 97 2 NA NA 80 0.01 NA NA 79 0.02
b3 100 235 2 NA NA 88 0.26 NA NA 84 0.18
b4 100 233 5 NA NA 119 0.22 NA NA 131 0.17
b5 100 97 10 NA NA 66 0.09 NA NA 79 0.07
b6 100 1051 2 NA NA 403 1.27 NA NA 345 0.88
b7 100 1022 5 NA NA 557 0.97 NA NA 651 0.75
b8 100 909 10 NA NA 646 0.90 NA NA 786 0.81
b9 1000 2954 2 NA NA 1079 186.24 NA NA 799 88.40
b10 1000 1989 5 NA NA 889 53.16 NA NA 907 22.82
b11 1000 1070 10 NA NA 535 16.19 NA NA 740 9.21
b12 1000 10066 2 NA NA 3656 555.38 NA NA 2754 268.14
b13 1000 9894 5 NA NA 4403 251.03 NA NA 4564 117.33
b14 1000 10411 10 NA NA 5189 180.11 NA NA 7184 103.94

avg. 2860 - - - 1266 88.99 - - 1365 43.77
ratio 2.26 - - - 1.00 1.00 - - 1.08 0.49

TABLE III: Comparison of different configurations and algorithms on RevLib benchmarks [34]

Design
1D Architecture - Single layer 2D Architecture - 4 layers

MILP CRSA MILP CRSA
Name |Q| |N | MT D T (s) D T (s) D T (s) D T (s)

4gt4-v0_73 257 341 2 NA NA 222 0.52 NA NA 222 0.47
4gt10-v1_81 131 168 2 NA NA 115 0.15 NA NA 115 0.12
rd84_142 897 1162 2 NA NA 475 5.75 NA NA 475 5.00
add16_174 1394 1792 2 NA NA 572 19.01 NA NA 577 16.43

cycle17_3_112 1911 2478 2 NA NA 1620 33.02 NA NA 1620 27.83
hwb5_53 1307 1729 2 NA NA 1132 13.85 NA NA 1132 12.09
sym6_145 1519 1980 2 NA NA 1137 17.93 NA NA 1137 15.65
ham15_107 3753 4938 2 NA NA 3005 138.30 NA NA 3005 103.76

avg. 1824 - - - 1035 28.56 - - 1035 22.67
ratio 1.76 - - - 1.00 1.00 - - 1.00 0.79

automatic geometric simplification are included in the future
work. It is also valuable to explore the opportunity of layout
optimization for reliability issues of TQEC circuits such as error
chain and qubit defects. With the rapid advancement in quan-
tum computing, there are lots of emerging layout challenges.
Error correction scheme like lattice surgery [36] removes the
need of braiding by splitting and merging planar code surfaces;
architecture like Multi-SIMD [37] scheme creates a circuit with
distributed regions connected by teleportation networks, while
each region only consists of small number of qubits. These
new schemes raise different constraints to the layout, remaining
to be explored. The layout optimization aims at creating
efficient and reliable implementation of quantum circuits for
high performance computing.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proc. STOC, 1996, pp. 212–219.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. FOCS, 1994, pp. 124–134.

[3] International Business Machines Corp., “The IBM quantum experience,”
http://researchweb.watson.ibm.com/quantum/, 2016.

[4] S. J. Devitt, “Performing quantum computing experiments in the cloud,”
arXiv preprint, 2016.

[5] A. G. Fowler and K. Goyal, “Topological cluster state quantum comput-
ing,” arXiv preprint, 2009.

[6] A. Paler, S. J. Devitt, and A. G. Fowler, “Synthesis of arbitrary quantum
circuits to topological assembly,” Scientific Reports, vol. 6, p. 30600 EP,
Aug 2016.

[7] I. Polian and A. G. Fowler, “Design automation challenges for scalable
quantum architectures,” in Proc. DAC, 2015, pp. 61:1–61:6.

[8] R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-tolerance
in cluster state quantum computation,” New Journal of Physics, vol. 9,
no. 6, p. 199, 2007.

[9] S. Beauregard, “Circuit for shor’s algorithm using 2n+ 3 qubits,” arXiv
preprint quant-ph/0205095, 2002.

[10] D. Maslov, “Linear depth stabilizer and quantum fourier transformation
circuits with no auxiliary qubits in finite-neighbor quantum architectures,”
Physical Review A, vol. 76, no. 5, p. 052310, 2007.

[11] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,” Theoretical
computer science, vol. 410, no. 26, pp. 2489–2510, 2009.

[12] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 6, pp. 818–830, 2013.

[13] N. Abdessaied, R. Wille, M. Soeken, and R. Drechsler, “Reducing the
depth of quantum circuits using additional circuit lines,” in International
Conference on Reversible Computation. Springer, 2013, pp. 221–233.

[14] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-
depth quantum carry-lookahead adder,” arXiv preprint quant-ph/0406142,
2004.

[15] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for
linear nearest neighbor architectures,” Quantum Information Processing,
vol. 10, no. 3, pp. 355–377, 2011.

[16] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum nearest-neighbor al-
gorithms for machine learning,” Quantum Information and Computation,
vol. 15, 2015.

http://researchweb.watson.ibm.com/quantum/

[17] A. Paler, S. Devitt, K. Nemoto, and I. Polian, “Synthesis of topological
quantum circuits,” in Proc. NANOARCH, 2012, pp. 181–187.

[18] S. Yamashita, “An optimization problem for topological quantum compu-
tation,” in Proc. ATS, 2012, pp. 61–66.

[19] A. G. Fowler and S. J. Devitt, “A bridge to lower overhead quantum
computation,” arXiv preprint, 2012.

[20] A. Paler, S. J. Devitt, K. Nemoto, and I. Polian, “Mapping of topological
quantum circuits to physical hardware,” Scientific Reports, vol. 4, 2014.

[21] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neighbor
synthesis of reversible circuits by graph partitioning,” arXiv preprint,
2011.

[22] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum
circuits for interaction distance in linear nearest neighbor architectures,”
in Proc. DAC, 2013, pp. 41:1–41:6.

[23] R. Wille, A. Lye, and R. Drechsler, “Optimal SWAP gate insertion for
nearest neighbor quantum circuits,” in Proc. ASPDAC, 2014, pp. 489–494.

[24] A. Shafaei, M. Saeedi, and M. Pedram, “Qubit placement to minimize
communication overhead in 2D quantum architectures,” in Proc. ASPDAC,
2014, pp. 495–500.

[25] A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number of
swap gates for multi-dimensional nearest neighbor quantum circuits,” in
Proc. ASPDAC, 2015, pp. 178–183.

[26] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization of
1D and 2D quantum circuits,” in Proc. ASPDAC, 2016, pp. 292–297.

[27] M. Pedram and A. Shafaei, “Layout optimization for quantum circuits
with linear nearest neighbor architectures,” IEEE MCAS, vol. 16, no. 2,
pp. 62–74, 2016.

[28] C.-C. Lin, S. Sur-Kolay, and N. K. Jha, “PAQCS: Physical design-aware
fault-tolerant quantum circuit synthesis,” IEEE VLSI, vol. 23, no. 7, pp.
1221–1234, 2015.

[29] N. Mohammadzadeh, “Physical design of quantum circuits in ion trap
technology–a survey,” Microelectronics Journal, vol. 55, pp. 116–133,
2016.

[30] R. Wille, B. Li, U. Schlichtmann, and R. Drechsler, “From biochips to
quantum circuits: computer-aided design for emerging technologies,” in
Proc. ICCAD, 2016, p. 132.

[31] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[32] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum
information,” Quantum, vol. 546, p. 1231, 2000.

[33] N. Cohen, “Several graph problems and their linear program formula-
tions,” 2010.

[34] “RevLib,” http://www.revlib.org.
[35] Gurobi Optimization Inc., “Gurobi optimizer reference manual,” http://

www.gurobi.com, 2014.
[36] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code

quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, 2012.

[37] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown,
D. Franklin, F. T. Chong, and M. Martonosi, “Compiler management
of communication and parallelism for quantum computation,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 1. ACM, 2015, pp.
445–456.

[38] M. R. Kramer and J. van Leeuwen, Wire-routing is NP-complete.
Department of Computer Science, University of Utrecht Utrecht, The
Netherlands, 1982.

APPENDIX

PROOF OF THEOREM 1
To find the minimum depth step in Problem 2, we need to
answer the decision problem: given an integer d(1 ≤ d ≤ |N |),
can the nets in Problem 2 be routed with total depth d. While
the answer to d = |N | is always true, it is non-trivial to solve
for the special case of d = 1, i.e., in one depth step. It turns out
the decision problem for single depth step is already difficult
even for 2-pin nets only. We define the decision problem of
qubit routing in single depth step for 2-pin nets as follows.

Problem 4 (Single-Depth Qubit Routing Decision). Given a
net set N with 2-pin nets only (one control qubit as source and

one target qubit as sink for each net) and one depth step of
3D grid system G where qubits are only located in the centers
of odd-height horizontal gridlines, can the nets be routed such
that

1) routing segments run along gridlines only;
2) routing for each net forms a circle that consists of a front

path and a back path;
3) the front path covers both source and sink;
4) the back path covers only the source, not the sink;
5) the routing circles of different nets must be vertex-disjoint.

Lemma 1. If the single-depth qubit routing decision problem
(Problem 4) is NP-complete, then the qubit routing problem
(Problem 2) is NP-hard.

Proof. Suppose that Problem 2 is polynomially solvable. For
any instance of Problem 4, we can construct an instance of
Problem 2. If the minimum depth to Problem 2 is larger than
1, the answer to the decision problem is no; otherwise, it is
yes. It follows that Problem 4 can be solved in polynomial
time, which is a contradiction to the assumption. Therefore,
Problem 2 is at least as hard as NP-complete. Considering that
Problem 2 is not in the set of NP (not a decision problem), it
is NP-hard.

The NP-completeness of similar routing problem has been
proved for 2-pin nets by reduction from 3-satisfiability (3-SAT)
problem [38]. Our problem on single-depth qubit routing deci-
sion has following major differences from previous problem,

1) the pins are located in the centers of odd-height horizontal
gridlines rather than arbitrary vertices on grids;

2) to cover a pin, a path has to occupy the full gridline which
contains the pin;

3) the routing of a net has to be a circle rather than a path.
Due to the differences, it is difficult to apply previous conclu-
sion to our problem, while we can still follow the procedure of
the previous proof by reduction from 3-SAT.

Previous work first proves the NP-completeness of a vari-
ation of routing problem with obstacles and then derive the
conclusion for the original routing problem [38]. We follow
this procedure as well. Let an obstacle be a rectangular domain
on grids, as shown in Fig. 19(a). For technical reasons, we first
prove the NP-completeness of an obstacle routing, which is a
variation of Problem 4 with obstacles that cannot be used for
routing. Then we derive that the original obstacle-free routing
in Problem 4 is also NP-complete.

Problem 5 (Single-Depth Qubit Routing Decision with Obsta-
cles). Given a net set N with 2-pin nets only (one source and
one sink) and M obstacles on a 3D grid system G with one
depth step where qubits are only located in the centers of odd-
height horizontal gridlines, can the nets be routed such that

1) routing segments run along gridlines only;
2) routing for each net forms a circle that consists of a front

path and a back path;
3) the front path covers both source and sink;
4) the back path covers only the source, not the sink;
5) the routing circles of different nets must be vertex-disjoint.

http://www.revlib.org
http://www.gurobi.com
http://www.gurobi.com

xi

yi

· · ·

· · ·

· · ·
· · ·

(a)

xi

yi

· · ·

· · ·

· · ·
· · ·

(b)

Fig. 13: Gadget to represent truth or false assignment of a
variable. Example of (a) front path and (b) back path. The
green rectangles denote obstacles. The source pin is marked
light green and sink pin is marked black. The front path and
back path are connected through their ending points.

xi zo

(a)

xi

zo

(b)

~xi zo

(c)

~
xi

zo

(d)

zo1

zo2

xi

(e)
xi1

xi2

zo1

zo2

(f)

Cl
au

se
 p

laz
a

xi

xj

xk

(g)

Fig. 14: Some symbols of gadgets. (a) Horizontal and (b)
vertical pipe (zo = xi). (c) Horizontal and (d) vertical inverter
(zo = z̄i). (e) Junction (zo1 = zo2 = xi). (f) Crossover
(zo1 = xi1, zo2 = xi2). (g) Clause plaza where there is feasible
routing solutions iff the clause has truth assignment.

Connector Connector Connector

Connector Connector

Connector

Connector

ConnectorConnector

xi xj xk

x̄
i
_

x
j
_

x
k

n columns

m
p
la

za
s

· · ·· · ·· · ·

· · ·

· · ·

· · ·

···

···

···

···
···

~

Fig. 15: Outline of the routing problem composed with gadgets.

Lemma 2. The single-depth qubit routing decision with obsta-
cles problem (Problem 5) is NP-complete.

Proof. The proof is conducted by polynomial transformation
from a 3-SAT instance to an obstacle routing instance. Given
a 3-SAT instance I , let {x1, x2, . . . , xn} denote n variables,
{x1, x̄1, . . . , xn, x̄n} denote 2n literals respectively. Let set
C = {c1, c2, . . . , cm} denote m clauses with 3 literals per
clause. We can reduce I to an obstacle routing instance I ′ with
O(nm) nets on a rectangular grid of area O(nm).

To construct instance I ′, it is necessary to have a gadget to
represent truth and false assignment of a variable, shown as
Fig. 13. The green rectangles denote obstacles and xi and yi

denote the source and sink in a net. There are two available
horizontal channels for routing, bottom and top. If the front
path of the routing circle from xi to yi goes through top
channel like the solid line in Fig. 13(a), we identify this case as
false assignment, i.e., the corresponding variable xi in 3-SAT is
assigned to 0; if the front path of the routing circle goes through
the bottom channel, it is regarded as truth assignment. This
gadget can be implemented in vertical direction by utilizing
vertical channels as well.

Note that although the back path of the routing circle also
has the option to go through the top or bottom channel, shown
as Fig. 13(b), it does not influence the Boolean assignment.
In other words, only the front path determines the Boolean
assignment. In the construction, we only show the front paths
to represent routing solutions for brevity. We will explain later
on how to derive the back paths from the front paths.

We define several gadgets to help construct the routing
instance I ′. A pipe propagates the assignment, whose symbols
are shown as Fig. 14(a) and Fig. 14(b), where the output zo
is equal to the input xi. An inverter flips the assignment,
whose symbols are shown as Fig. 14(c) and Fig. 14(d), where
the output zo is equal to x̄i. A junction takes one input and
copies to its two output ports, whose symbol is shown as
Fig. 14(e), where both outputs zo1 and zo2 are equal to xi. A
crossover copies its left input assignment to right and top input
assignment to bottom, whose symbol is shown as Fig. 14(f),
where zo1 = xi1 and zo2 = xi2. A clause plaza takes three
literal assignments as input and exists a feasible routing solution
if only if any of the literals has truth assignment; i.e., the
clause has truth assignment. In addition, due to the alternate grid
height for pins (sources and sinks) in the problem, connectors
are introduced to connect various gadgets vertically so that the
assignments to variables can propagate from top to bottom.

Fig. 15 gives an outline of the routing instance I ′ consisting
of gadgets, where n columns are introduced for n variables and
m clause plazas are introduced for m clauses. We show how to
construct one clause with gadgets. The assignments to variables
propagate along columns and rows with pipes, junctions and
crossovers. We can insert an inverter to create a literal for
inversion of a variable (e.g., x̄i) shown as the inverter next
to the clause plaza in the figure. For each clause, we need a
clause plaza to take 3 corresponding literals as input, shown as
the right side of the figure, where the clause x̄i ∨ xj ∨ xk is
mapped. If only if any of x̄i, xj , xk is equal to 1, the plaza has
a feasible routing solution; otherwise, it cannot be routed.

We will explain the implementation of gadgets later. There
are n columns and 3m rows (one clause requires 3 rows) for
this construction. Thus the amounts of gadgets are in an order
of O(nm). As each gadget will be implemented with constant
number of nets and grids, the full instance I ′ requires O(nm)
nets and O(nm) grids, which is polynomial in problem size.

Given the outline of the construction, we now explain the
implementation of each gadget in details. The implementation
of gadgets only involve the obstacles shown in Fig. 19(a) which
will help transform back to obstacle-free routing later.

Pipe. Fig. 16 shows the implementation of horizontal and
vertical pipes. For each implementation, we enumerate all the

x
i
=

0
x

i
=

1

z o
=

0
z o

=
1

(a)

x
i
=

0
x

i
=

1

z o
=

0
z o

=
1

(b)
xi = 0 xi = 1

zo = 0 zo = 1

(c)

xi = 0 xi = 1

zo = 0 zo = 1

(d)

Fig. 16: Pipes with two cases of input:
horizontal pipe (a) xi = 0, (b) xi = 1 and
vertical pipe (c) xi = 0, (d) xi = 1.

x
z

z o
=

0
z o

=
1

x
i
=

0
x

i
=

1

(a)

x
z

x
i
=

0
x

i
=

1

z o
=

0
z o

=
1

(b)
xi = 0 xi = 1

z
x

zo = 0 zo = 1

(c)

xi = 0 xi = 1

z
x

zo = 0 zo = 1

(d)

Fig. 17: Inverters with 2 cases of input:
horizontal inverter (a) xi = 0, (b) xi = 1
and vertical inverter (c) xi = 0, (d) xi = 1.
Sources are in light green and sinks are in
black, same for other figures in this section.

x

xi = 0 xi = 1

zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

z1

z2

(a)

x

xi = 0 xi = 1

zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

z1

z2

(b)

Fig. 18: Junction with two cases
of input: (a) xi = 0 (b) xi =
1. Additional inverter is required
for output zo1 at the bottom.

(a) (b) (c)

Fig. 19: (a) Representation of an obstacle.
(b) Corresponding net with front path and
(c) back path. The front path and back path
are connected through their ending points.

GadgetGadget

(a)

Additional
obstacles

Gadget

Gadget

(b)

Fig. 20: (a) Horizontal and (b) vertical
connection of gadgets. 4 additional obsta-
cles are required for vertical connection.

zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

xi1 = 0 xi1 = 1

x
i2

=
0

x
i2

=
1

x1

z1

s
t

(a)
zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

xi1 = 0 xi1 = 1

x
i2

=
0

x
i2

=
1

x1

z1

s
t

(b)

zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

xi1 = 0 xi1 = 1

x
i2

=
0

x
i2

=
1

x1

z1

s
t

(c)
zo1 = 0 zo1 = 1

z o
2

=
0

z o
2

=
1

xi1 = 0 xi1 = 1

x
i2

=
0

x
i2

=
1

x1

z1

s
t

(d)

Fig. 21: Crossover with 4 cases of input: (xi1, xi2) = (a) 00, (b) 01, (c) 10, (d) 11.
Additional inverter is required for output zo1 at the bottom.

combinations of input patterns to verify its correctness. Since
a pipe only propagates the assignment, the routing path always
exits from the same channel as that of the input. It needs to
mention that the vertical pipes are designed with special ports
at top and bottom for alignment with other gadgets vertically,
which will be discussed together with connectors.

Inverter. Fig. 17 shows the implementation of horizontal and
vertical inverters. We take Fig. 17(a) as an example where the
input xi = 0. Two additional pins x and z are introduced. The
input xi must connect to sink x and source z must connect to

output zo. When xi = 0, due to the existence of obstacles, the
routing path enters the gadget from the top channel and block
the way after connecting to pin x for pin z to exit from the
top channel which represents zo = 0. As a consequence, the
routing for pin z can only go through the bottom channel to
zo which represents zo = 1. The entire gadget behaves like
an inverter as it switches the routing channel. Other cases and
vertical inverters can be verified in a similar way.

Junction. Fig. 18 shows the implementation of a junction
where 3 pins are introduced with 3 nets. Pin x has to connect

s

t

u

v

yi yk

yj BL
O
CK

ED

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

(a)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(b)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(c)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(d)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(e)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(f)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(g)

yi yk

x
i
=

0
x

i
=

1
x

j
=

0
x

j
=

1

x
k

=
0

x
k

=
1

yj

s

t

u

v

(h)

Fig. 22: Clause plaza with 8 cases of input: (xi, xj , xk) = (a)
000, (b) 001, (c) 010, (d) 011, (e) 100, (f) 101, (g) 110, (h)
111. Additional inverter is required for input xj at the bottom
left. Additional inverter and pipes are needed to lead xk from
left side of the gadget to right. Sources are in light green and
sinks are in black.

to input xi, pin z1 has to connect to output zo1 and pin z2 has
to connect to output zo2. Again we take the case of xi = 0
shown in Fig. 18(a) as an example. The routing between input
xi and pin x separates pin z1 from the channel of zo1 = 0, so
the routing path of pin z1 has to exits from the bottom right
port, indicating zo1 = 1. At the same time, the routing path of
z2 is forced to go through the top right port as zo2 = 0. The
implementation in the figure will flip xi at zo1, so an inverter
is required at the bottom to ensure the functionality of zo1 =
zo2 = xi. The inverter is not drawn for brevity.

Crossover. Fig. 21 shows the implementation of a crossover
where 4 pins are introduced with 4 nets. Pin x1 must connect
to input xi1, pin s must connect to pin t, pin z1 must connect to
output zo1, and input xi2 must connect to output zo2. We mark
the routing path between pin s and t with different color because
it does not associate with any input and output. We enumerate
all the 4 possible input patterns to verify the functionality of
the gadget. Take the case (xi1, xi2) = 00 as an example in
Fig. 21(a). The routing paths of input xi2 to output zo2 and
pin s to t have to take the only two horizontal gridlines below
pin x1; otherwise, if they go anywhere above pin x1, it is not
possible to finish the connection between input xi1 and x1.
Input xi1 has to access pin x1 from the left of the obstacle in

the middle; otherwise, routing between pin z1 and output zo1
cannot finish. After careful analysis, we are able to derive that
the routing paths have to exit from zo1 = 1 and zo2 = 0. Other
cases can be analyzed in the same way. One additional inverter
is required for zo1 at the bottom of the gadget.

Clause plaza. Fig. 22 show the implementation of a clause
plaza where 7 pins are introduced with 5 nets. A clause plaza
only has 3 inputs without any output. These nets include input
xi to pin yi, input xj to pin yj , input xk to pin yk, pin s to t,
and pin u to v. In this gadget, we need to ensure infeasibility
when xi = xj = xk = 0, shown as Fig. 22(a). In this case, due
to limited number of available vertical channels in the middle,
it is not possible for pin s, t, u, v to finish connection without
using neighboring vertical gridlines which are taken for routing
of other nets. As a result, no feasible routing solution can be
found, which is used to indicate the false assignment of the
clause. For any other case with at least one literal assigned
to truth, it is not difficult to find a feasible routing solution.
Although the input ports for xk appear on the right of the clause
plaza, we can redirect them to left with pipes and inverters.

Connector. Connectors are introduced to connect gadgets
vertically. For horizontal connection of gadgets, we need to
align the ports of two gadgets with one grid gap as shown in
Fig. 20(a), while for vertical connection, vertical ports need to
align and a connector is inserted between two gadgets, shown
as four additional obstacles in the middle of Fig. 20(b).

Although the back paths are not shown in the figures, we can
derive them from front paths for any gadget. In the figures for
gadgets, we design the routing of front paths in a way that the
back paths can be found as follows. The back path can follow
the routing of the front path except that at the sink of each net,
where the back path needs to avoid the sink and connect to the
ending point of the front path. Take Fig. 13 as an example. The
only difference between the front path and back path lies in the
segments near the sink yi. The back paths of gadgets can be
derived in the same way such that the entire routing solution
for each net in Figs. 16, 17, 18, 21, and 22 can be filled.

With the construction in polynomial time and amount of
resources, we conclude that the obstacle routing instance I ′ is
a consistent image of the 3-SAT instance I . The clauses C are
simultaneously satisfied if only if a feasible routing solution for
all clause plazas exists. Thus 3-SAT polynomially transforms to
obstacle routing, which finishes the proof for obstacle routing
from the NP-completeness of 3-SAT.

With the proof of obstacle routing in Problem 5, we still
need to prove the obstacle-free routing in Problem 4. We will
show that an obstacle routing instance can be transformed to
an obstacle-free routing instance in polynomial time and vice
versa.

Lemma 3. The single-depth qubit routing decision with obsta-
cles problem (Problem 5) polynomially transforms to the single-
depth qubit routing decision problem (Problem 4).

Proof. Given an instance I of obstacle routing, we construct an
equivalent instance I ′ of the routing in Problem 4. While all the
nets and pins remain the same, the obstacles are replaced with
local nets, shown in Fig. 19. Note that in the transformation

from 3-SAT to obstacle routing, we only use obstacles in
Fig. 19(a). Due to the implementation of obstacles, they cannot
be placed in arbitrary positions, but we have already considered
that in the transformation from 3-SAT to obstacle routing. By
replacing these obstacles with local nets, we can construct an
instance I ′ of Problem 4 in polynomial time.

Any solution to I can translate to the solution of I ′ in
polynomial time by replacing the obstacles with local pairs of
pins shown in Fig. 19. Conversely, consider any solution to
I ′. We assume direct connection of the locally adjacent pairs
of pins. If they do not connect in this way, we can adapt the
routing to this way, because it results in the minimum regions
that these pins block out and leave the remaining area free for
other nets. It means that these adjacent pairs of pins behave
like obstacles in instance I . Then the solution to I ′ translates
back into a solution of I in polynomial time.

Lemma 4. The single-depth qubit routing decision problem
(Problem 4) is NP-complete.

Proof. Proof followed by combining Lemmas 2 and 3.

With Lemma 4 and Lemma 1, we conclude the NP-hardness
for qubit routing in Theorem 1.

Yibo Lin (S’17) received the B.S. degree in micro-
electronics from Shanghai Jiaotong University, Shang-
hai, China, in 2013. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Computer Engineering, University of Texas at Austin,
Austin, TX, USA. He was a recipient of the Franco
Cerrina Memorial Best Student Paper Award at the
SPIE Advanced Lithography Conference 2016, and
the University Graduate Continuing Fellowship in
2017.

Bei Yu (S’11–M’14) is currently an Assistant Pro-
fessor in the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
He has served in the editorial boards of Integration,
the VLSI Journal and IET Cyber-Physical Systems:
Theory & Applications. He received four Best Paper
Awards at International Symposium on Physical De-
sign 2017, SPIE Advanced Lithography Conference
2016, International Conference on Computer Aided
Design (ICCAD) 2013, and Asia and South Pacific
Design Automation Conference (ASPDAC) 2012,

plus three additional Best Paper Award nominations at DAC/ICCAD/ASPDAC,
and three ICCAD contest awards in 2015, 2013 and 2012.

Meng Li (S’15) received his B.S. degree in Micro-
electronics from Peking University, Beijing, China in
2013. He is currently pursuing the Ph.D. degree in
Electrical and Computer Engineering, the University
of Texas at Austin, Austin, TX, USA under the su-
pervision of Prof. David Z. Pan. His research interests
include hardware-oriented security, reliability, power
grid simulation acceleration and deep learning. He
received the best paper award in HOST 2017 and
Graduate Fellowship from UT Austin in 2013.

David Z. Pan (S’97-M’00-SM’06-F’14) is currently
the Engineering Foundation Professor with the Uni-
versity of Texas at Austin, Austin, TX, USA. He
has published over 280 refereed technical papers,
and holds eight U.S. patents. He has graduated over
20 Ph.D. students who are currently holding key
academic and industry positions. His current research
interests include cross-layer nanometer IC design for
manufacturability, reliability, security, physical de-
sign, analog design automation, and CAD for emerg-
ing technologies. Prof. Pan was a recipient of a

number of awards for his research contributions, including the SRC 2013
Technical Excellence Award, DAC Top 10 Author in Fifth Decade, ASP-DAC
Frequently Cited Author Award, and 14 best paper awards. He has served as
a Senior Associate Editor for ACM Transactions on Design Automation of
Electronic Systems, an Associate Editor for a number of other journals. He has
served in the Executive and Program Committees of many major conferences,
including ASPDAC 2017 Program Chair and ICCAD 2018 Program Chair. He
is a fellow of SPIE.

