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Abstract—As VLSI technology shrinks to fewer tracks per standard
cell, e.g., from 10-track to 7.5-track libraries (and lesser for 7nm),
there has been a rapid increase in the usage of multiple-row cells
like two- and three-row flip-flops, buffers, etc., for design closure.
Additionally, the usage of multi-bit flip-flops or flop trays to save power
creates large cells that further complicate critical design tasks, such
as placement. Detailed placement happens to be a key optimization
transform, which is repeatedly invoked during the design closure flow
to improve design parameters, such as, wirelength, timing, and local
wiring congestion. Advanced node designs, with hundreds of thousands
of multiple-row cells, require a paradigm change for this critical design
closure transform. The traditional approach of fixing multiple-row
cells during detailed placement and only optimizing the locations of
single-row standard cells can no longer obtain appreciable quality of
results. It is imperative to have new techniques that can simultaneously
optimize both multiple- and single-row high cell locations during detailed
placement. In this paper, we propose a new density-aware detailed
placer for heterogeneous-sized netlists. Our approach consists of a
chain move scheme that generalizes the movement of heterogeneous-
sized cells, a nested dynamic programming based approach for ordered
double-row placement and a network flow based formulation to solve
ordered multiple-row placement for wirelength and density optimization.
Experimental results demonstrate the effectiveness of these techniques
in wirelength minimization and density smoothing compared with the
most recent detailed placers for designs with heterogeneous-sized cells.

Index Terms—Physical design, Detailed placement, Multiple-row
height cells, Chain move, Network flow

I. INTRODUCTION

Using single-row height standard cells has been the dominant
methodology for modern VLSI digital design. For a given technology
node, the height and width of standard cells are carefully selected to
optimize various characteristics, such as, timing, packing, and pin
accessibility. The common nomenclature for cell libraries is “N”-
track, with “N” being the height of the circuit row and standard
cells in terms of the number of covered routing tracks. The last few
years have seen a steady decrease in “N” with each new technology
node, e.g., from 10 to 7.5 (and possibly lesser for 7nm). In this
scenario, it is getting increasingly difficult to design complex circuit
components (flip-flops, muxes, etc.) as single-row height cells, while
satisfying required performance and routing characteristics. As a
result, advanced node designs are increasingly adopting the design
and usage of multiple-row height cells for such complex circuit
components.

Additionally, to satisfy stringent power requirements, flip-flop
merging and usage of multi-bit flip-flops (MBFFs) or flop trays is
becoming increasingly prevalent [1]–[3] in modern designs. MBFF

The preliminary version has been presented at the International Conference
on Computer-Aided Design (ICCAD) in 2016. This work was supported
in part by National Science Foundation (NSF), Semiconductor Research
Corporation (SRC), and The Research Grants Council of Hong Kong SAR
(Project No. CUHK24209017).

Y. Lin, X. Xu and D. Z. Pan are with The Department of Electrical and
Computer Engineering, The University of Texas at Austin, TX, USA.

B. Yu is with The Department of Computer Science and Engineering, The
Chinese University of Hong Kong, NT, Hong Kong.

J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li and C. J. Alpert are with
Cadence Design Systems Inc., Austin, TX, USA.

enables the sharing of clock buffers between flip-flops, which
decreases both power and area. Statistics show that a 2-bit MBFF is
able to achieve around 14% power reduction and 4% area reduction
per bit, while a 4-bit MBFF can achieve around 22% power reduction
and 29% area saving per bit [3]. But MBFFs happen to be large,
multiple-row height cells. This significantly increases the complexity
for steps like legalization and detailed placement.

In addition, to meet die-size requirements for area, power, and
cost reduction, design densities are approaching the limit. It is
common for designs with up to 90% density, which makes detailed
placement critical to resolve local wiring congestion. In an extremely
dense design, it is very difficult to insert or move large cells during
legalization and detailed placement without significant disruption to
the local neighborhood. Furthermore, the number of interconnect
pins per standard cell varies for a given cell library and often
lacks correlation to the cell area. Without careful planning, local
congestion can be caused by accumulation of cells with high pin
count. Therefore, it is critical to make proper usage of the limited
die area for optimizing both wirelength and congestion.

Placement is usually divided into three steps, global placement,
legalization and detailed placement [4]. Global placement determines
the rough locations of cells while minimizing objectives, such as,
wirelength, routability and timing. But the solution from global
placement often contains overlap and thus is not design rule friendly.
Legalization removes overlaps and aligns cells to placement sites.
Finally, detailed placement tries to further improve the solution
by moving cells locally. Sometimes legalization is integrated into
detailed placement instead of a separate step.

Global placement techniques are fairly mature in handling the
mixed-sized placement problem [5]–[10]. But there has been little
research in detailed placement for heterogeneous-sized netlists, es-
pecially where the number of multiple-row height cells ranges in
the hundreds of thousands, as seen in advanced node designs. Wu
et al. [11] propose a straightforward technique to handle double-
row height cells during detailed placement. In their method, they
use cell grouping and cell inflation to convert all the single-row
height cells in the design to double-row height cells. This results in a
placement problem with only double-row height cells. Consequently,
a conventional placement engine can be used to optimize the designs.
However, this approach is unable to handle the power line alignment
constraint from multiple-row height cells; e.g. cells with power
rail on top and bottom have to be placed in rows with the same
power line configuration. Another key drawback with this approach
is its inability to handle larger cells that span three or more circuit
rows. Chow et al. [12] propose the first legalization algorithm for
multiple-row height standard cells with an objective of displacement
minimization. They explore the insertion points in the layout and try
to remove overlaps with minimum displacement. Wang et al. [13]
adapt Abacus engine to handle multiple-row height cells. Hung
et al. [14] improve the solution quality by linear programming
(LP). Chen et al. [15] solve a linear complementary problem for
displacement minimization in legalization. A summary on recent
detailed placement challenges and approaches can be found in [16].
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Fig. 1: Example of multiple-row height cells in a layout.

To address the challenges in placement for advanced technology
nodes, we propose a detailed placer for heterogeneous-sized netlists
that addresses the traditional detailed placement objectives of wire-
length, cell density and pin density [4], [5], [11], [17]–[20]. The
major contributions are summarized as follows.

1) A chain move scheme that generalizes the movement of
heterogeneous-sized cells to optimize wirelength, cell and pin
density by searching for the maximum prefix sum of the
improvements.

2) A nested dynamic programming based technique solving or-
dered double-row placement for wirelength optimization.

3) A network flow based formulation to solve ordered multiple-
row placement that is flexible to both displacement minimiza-
tion and wirelength optimization.

4) Outperform the most recent detailed placer for multiple-row
height cells by 3.7% in scaled wirelength, 20.2% in cell density
and 13.4% in pin density.

The rest of the paper is organized as follows. Section II illustrates
the special constraints and problem formulation for the place-
ment. Section III provides a detailed explanation of our proposed
techniques. Section IV verifies the effectiveness of our approach,
followed by conclusion in Section V.

II. PRELIMINARIES AND OVERALL FLOW

In this section, we will explain the constraints in placement
for designs with heterogeneous-sized standard cells and give the
problem formulation.

A. Power Line Alignment

Power line alignment is a special placement constraint from a
multiple-row height cell. In modern VLSI layouts, the power lines
that connect to standard cells are typically located at the bottom and
top of placement rows. Meanwhile, standard cells have to align to
placement rows for proper power line alignment. Fig. 1 illustrates an
layout example of seven multiple-row height cells, where five cells
take even number of rows (i.e. cells a, c, d, f and g). Cells a, d and
g have power rails (VDD) on top and bottom of the cells, and ground
rails (GND) in the middle. They must be placed in alternative rows
with proper VDD/GND alignment, since we cannot fix the alignment
through cell flipping or rotation. Similarly, cells c and f have VDD
in the middle and GND on the top and bottom. The bottom of such
cells must be aligned to rows with GND at the bottom. However, for
cells with odd number of rows, such as cell b and e, there is no such
constraint, since it has power rail on the top or bottom and ground
rail on the other side. This configuration is the same as single-row
height cells, so cell flipping and rotation can fix the alignment issue.

The constraint for power line alignment can be summarized as
follows. An even-row height cell must align to placement rows with
the same type of power line at the bottom as that in the cell, while
any odd-row height cell, including single-row height cell, can align
to any placement row with proper orientation.

B. Problem Formulation

In modern VLSI placement, the optimization usually includes
multiple objectives, such as wirelength and density. Wirelength is
still regarded as the major objective, while density metrics cannot be
neglected, because pure wirelength-driven placement often produces
congested solution that results in difficulty for post-placement stages,
such as routing. Therefore, in this work we adopt the scaled wire-
length metric from ICCAD 2013 placement contest [21] considering
both wirelength and cell density. Half-perimeter wirelength (HPWL)
is used as the wirelength metric, which is defined as follows:

HPWL =
∑
n∈N

max
i∈n

xi −min
i∈n

xi + max
i∈n

yi −min
i∈n

yi, (1)

where N denotes the set of interconnections in the circuit.
Average bin utilization (ABU) evaluates the density of a placement

solution [8]. The average density of the top γ% bins of highest
utilization is denoted by ABUγ . The ABU penalty for density is
computed from a weighted sum of overflow, which is defined in the
following equations.

overflowγ = max (0,
ABUγ
dt

− 1), (2a)

ABU =

∑
γ∈Γ wγ · overflowγ∑

γ∈Γ wγ
,Γ ∈ {2, 5, 10, 20}, (2b)

where dt denotes the target utilization and w2, w5, w10, w20

are set to 10, 4, 2, 1, respectively. With the definition of ABU
penalty, ICCAD 2013 placement contest defines a scaled wirelength
cost to generalize both wirelength and density costs, as shown in
Equation (3).

sHPWL = HPWL · (1 + ABU). (3)

In the ICCAD 2013 placement contest, only cell area utilization is
included in the computation of ABU. In advanced technology nodes,
area utilization is not enough to model the congestion, because some
large cells may contain very few pins, while some small cells may in
the contrast involve a lot of interconnections. So we propose average
pin utilization (APU) that captures the pin distribution of the layout.
The pin density in each bin is the ratio of number of pins to the
number of placement sites in the bin. Once the pin density map is
obtained, the computation of APU penalty is the same as that of
ABU, shown in following equations,

overflowpγ = max (0,
APUγ
dpt

− 1), (4a)

APU =

∑
γ∈Γ wγ · overflowpγ∑

γ∈Γ wγ
,Γ ∈ {2, 5, 10, 20}, (4b)

where dpt denotes target pin utilization and APUγ denotes the
average pin density of the top γ% bins of highest pin utilization.

With all the metrics defined, the multiple-row detailed placement
(MrDP) problem is defined as follows.

Problem 1 (MrDP). Given an initial heterogeneous-sized standard
cell placement plus a number of fixed macro blocks, either legal or
not, we produce a legal placement solution with optimized wirelength
and density, i.e. sHPWL and APU.

C. Overall Flow

The overall flow of our placement engine is shown in Fig. 2.
Given the placement solution from global placement, we first check
whether the placement is legal. If it is not legal, legalization is
performed to remove overlaps and align power line of multiple-
row cells. In this step, we first perform ordered multiple-row
placement to remove as much overlap as possible with minimum



displacement. Then chain move algorithm (see Section III-A) in
overlap reduction mode is performed to further remove rest overlaps.
These two techniques are usually powerful enough to remove all
the overlaps as long as the design has reasonable utilization. If
there are still remaining overlaps, we search for nearest available
locations for remaining cells that still contain overlaps, while this
is never triggered in the experiment. Then we perform wirelength
optimization to improve both wirelength and density until less than
1% cells are moved or maximum iteration is reached. We allow
at most 6 iterations in the experiment. The ordered multiple-row
placement (see Section III-B and Section III-C) is performed to
further optimize wirelength. Before the final placement is produced,
we refine density by invoking chain move algorithm in density
recovery mode because wirelength optimization often pack cells
together at the cost of density degradation.

Initial 
placement

Legalization

Detailed 
placement

Ordered multiple-row 
placement to minimize Disp.

Chain move in 
overlap reduction mode

Output 
placement

Chain move iterations in 
WL mode

Ordered multiple-row 
placement for WL refinement

Chain move iterations in 
density recovery mode

Fig. 2: Overall flow of placement.

III. DETAILED PLACEMENT FOR MULTIPLE-ROW CELLS

In this section, we will explain our placement algorithms such as
Chain Move and Ordered Double-Row Placement in details.

A. Chain Move Algorithm

One of the typical detailed placement approaches is to improve
wirelength in a cell-by-cell manner; i.e. pick a cell and move to better
position or try to swap with another cell for better wirelength [4],
[18], [19]. It is proved to be very effective in the detailed placement
for single-row cells. However, the situation changes when it comes to
multiple-row height cells. Since a multiple-row height cell occupies
the space of contiguous rows, it is more likely to involve overlaps
with multiple cells, which results in the failure of position search
with previous approach. Fig. 3(a) gives an example of placement
which is difficult to insert another multiple-row height cell t into
the dashed region without perturbing at least two cells. With slightly
shifting cells g and j, shown as Fig. 3(b), cell t can be placed in
the dashed region without overlap. Similar situation may also occur
to very large single-row height cells which are difficult to be fit into
dense regions without perturbation of multiple cells.

If it is able to allow the movement of multiple cells at a time,
there will be more candidate positions for better placement quality.
Inspired by density preserving refinement from [9] and gain map
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Fig. 3: Example of (a) placement with multiple-row height cells (b)
inserting another cell t by slightly shifting cell g and j.
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Fig. 4: A chain move example of (a) 1st movement: place cell t to
p1 from p0

1 and push overlapped cell g and j to cell pool (b) 2nd
movement: pop cell g from cell pool and place to p2 from p0

2 (c)
3rd movement: pop cell j from cell pool and place to p3 from p0

3

(d) corresponding chain move entry in scoreboard.

from [22], [23], we develop an algorithm to allow other cells to
move together when optimizing a target cell.

Definition 1 (Chain Move). Each chain move contains a set of
movements for one or several cells.

A chain move involving multiple cells is usually triggered by the
attempts of inserting a cell into a position resulting in overlaps with
existing cells in that region, so the overlapped cells need to find new
positions to resolve overlaps. If a cell is placed to a position without
any overlap, there is only a single movement in the chain move.

Definition 2 (Cell Pool). It is a queue structure used for temporary
storage of cells within a chain move.

In the example of Fig. 3, cell t overlaps with cells g and j when
inserted to the dashed region, so cells g and j are added to the cell
pool. In the following steps, cells in the cell pool are first popped
out and placed until the cell pool goes empty, which indicates the
end of a chain move.

Definition 3 (Scoreboard). It consists of an array of chain move
entries with corresponding changes in wirelength cost for each chain
move.

Since the positions of all cells are determined at the end of a
chain move, we can compute accurate wirelength cost and record
the differences with that at the beginning of the chain move. The
scoreboard can help find a cumulatively good solution instead of that
in a very greedy approach which usually requires improvements in
each movement.

For the chain move example in Fig. 3, Fig. 4 gives the correspond-
ing example of interaction between the cell pool and scoreboard.
Here the horizontal cylinders on top of each Figs. 4(a) to 4(c)
indicate the status of the cell pool before any movement, while the
ones on the bottom indicate the status after the movements. At the
beginning of the 1st movement, the cell pool is empty. Cell t is
moved to position p1 from p0

1 but results in overlap with cells g
and j during the 1st movement, so they are pushed into the cell



TABLE I: Notations used in Chain Move Algorithm

Pool The cell pool.
Board The scoreboard.
p0
i Initial position of Cell ci.
pi Candidate position of cell ci.
Oi The set of cells overlapping with cell ci at pi.

costi The cost of cell ci at pi.
pb, Ob, costb Correspond to best pi, Oi, costi, respectively.

pool. In the 2nd movement, cell g is popped from the cell pool and
moved to position p2 from p0

2 to resolve overlap. Similarly, the 3rd
movement places cell j to position p3 from p0

3. Fig. 4(d) shows the
corresponding chain move entry in the scoreboard, which not only
records each movement but also the change of wirelength cost before
and after this chain move.

1) Overview of Chain Move Algorithm: The overview of the
chain move algorithm is shown in Algorithm 1 and the notations
are defined in TABLE I. In general each cell is only allowed to
move once during one iteration. The function ReorderCells in
line 1 of Algorithm 1 shuffles the cell sequence in C. Then cell set
C is copied to a first-in-first-out queue structure and the main loop
of chain move algorithm begins.

Within the loop, we first try to fetch a cell from the cell pool. If
the cell pool is empty, we then obtain the first cell ci in C. Then
region ri for cell ci is computed for search of candidate positions,
which is completed by function ComputeSearchRegion. The
power line alignment constraints are considered during the selection
of candidate positions.

For each candidate position aj in Ai, the cost is computed by
function ComputeMoveCost and the position with the best cost
is applied to the cell from lines 15 to 28. When applying the best
position, it is necessary to push all the overlapped cells in Ob to
the cell pool and update the movement records in the scoreboard.
If the cell pool goes to empty after a movement, which means the
end of the chain move, we can now compute the accurate wirelength
change and update the scoreboard. At the end of each pass, function
BacktraceToBestEntry scans the scoreboard to find the best
cumulative wirelength.

2) Max Prefix Sum of Wirelength Improvement: Like that in the
well-known KL and FM partitioning algorithm [22], [23], we have
a scoreboard that records the wirelength changes in each chain
move, which helps find the maximum prefix sum of wirelength
improvement by BacktraceToBestEntry. So the chain move
scheme allows temporary degradation of wirelength as long as it
eventually achieves better solutions, which can help find the best
cumulative wirelength.

3) Constraints to Chain Move: There exist corner cases where a
cell may fail to find any legal position in its search region. The corner
case is likely to be triggered when all cells in a dense region have
already been moved in this pass, because each cell is only allowed
to move once in each pass. If such corner cases are triggered, we
discard current chain and recover all the movements in this chain.
Another corner case lies in the involvement of too many cells in
a chain, which may result in the difficulty in searching for legal
positions for the last cell. Therefore, we set an upper bound to the
length of a chain to avoid long chains. Any chain exceeding the upper
bound will trigger the discarding process. The maximum length of
chain is set to 10000, but it is never triggered in the experiment.

Lemma 1. If the placement is legal at the beginning of a chain
move, the legality is maintained at the end of the chain move.

Proof. If the chain is discarded, all movements are recovered, so
there is no perturbation to the placement. Otherwise, the chain ends

Algorithm 1 Chain Move Algorithm

Require: A set of placed cells C in the layout.
Ensure: Move cells to minimize wirelength cost.

1: ReorderCells(C);
2: Re-structure C as a queue;
3: while C is not empty or Pool is not empty do
4: if Pool is not empty then
5: ci ← Pool.pop();
6: else
7: ci ← C.pop();
8: if ci has already been moved then
9: Continue;

10: end if
11: end if
12: ri ← ComputeSearchRegion(ci);
13: Ai ← collect candidate positions in ri;
14: costb ←∞;
15: for each aj ∈ Ai do
16: (costi, pi, Oi)← ComputeMoveCost(ci, aj);
17: if costi < costb then
18: costb ← costi; pb ← pi; Ob ← Oi;
19: end if
20: end for
21: Move ci to pb;
22: Pool.push(Ob);
23: Board.last.append(ci, p0

i → pb);
24: if Pool is empty then
25: Compute ∆WL for Board.last;
26: end if
27: end while
28: BacktraceToBestEntry(C, Board);

because the cell pool goes empty, which means the last movement
does not cause any overlap. So the placement is still legal at the end
of the chain move. The maintenance of legality is very meaningful
to avoid wirelength degradation from extra legalization effort.

4) Visiting Order of Cells: The visiting order of cells during each
pass matters to the solution quality. If we keep a fixed order for each
iteration, the wirelength saturates quickly and fails to descent further.
So a suitable visiting order is essential to the solution quality under
different objectives. Here we discuss the details about the function
ReorderCells for different optimization objectives. In overlap
reduction mode, multiple-row height cells and large cells have higher
priority, because it is easier for small cells to find overlap-free
positions and thus a legal placement can be found more efficiently.
When it comes to wirelength minimization from a legal placement,
those cells far away from their optimal regions are granted with high
priority, because higher gain can be achieved by moving cells with
longer distances.

5) Search Region Computation: We discuss the function
ComputeSearchRegion here on search region computation.
First we compute the optimal region as most previous global move
algorithms do [18], but it is often congested. We extend the optimal
region by mirroring the original position of the cell to the center
of the optimal region and form a new box. Any bin intersecting
with the search region will be considered for collection of candidate
positions to the set Ai. We check bins from the ones close to the
optimal region to farther ones. We observe that after several updates
in line 18 to 20 for each cell, the final solution quality converges.
To save runtime we exit early from the loop after trying several
positions for each cell in the experiment.



6) Move Cost Computation: Now we explain the function
ComputeMoveCost. The objective of the placement includes
wirelength and density. In addition, each movement may lead to
overlapping cells that will be collected to the cell pool. So the cost
consists of three parts: wirelength cost, density cost, and overlap
cost, shown as follows,

cost = ∆WL · (1 + α · cd) + β · cov, (5)

where ∆WL denotes the wirelength cost, cd denotes density cost
and cov denotes the overlap cost. The weights α and β are set to
1.5 and 0.5 in the experiment.

Wirelength cost is in general defined as the HPWL change for the
movement. However, if the cell is connected to some cells in the cell
pool whose positions are not determined yet, such connections are
ignored.

In the density cost, we consider both area density and pin density.
In the placement that involves multiple-row height cells, the cells can
be very large and result in the intersections with multiple bins. So the
density increases in all bins are summed up for cost. Let cad denote
the cost of area density and cpd denote the cost of pin density. Let
B be the set of bins intersected with the cell ci at candidate position
pi and da(b) and dp(b) denote the original area and pin density for
bin b.

cad =
∑
b∈B

∑
γ∈Γ

wγ · f(da,∆da,ABUγ), (6a)

cpd =
∑
b∈B

∑
γ∈Γ

wγ · f(dp,∆dp,APUγ), (6b)

cd = 0.5× (
cad
dat

+
cpd
dpt

), (6c)

f(d,∆d, d) =

{
∆d
d
, if d+ ∆d ≥ d,

0, otherwise,
(6d)

where ∆da and ∆dp denote the area and pin density increase in
each bin, dat and dpt denote the target area and pin density for the
layout, respectively. Function f computes the density cost and the
cost only happens when the new density exceeds the average density
of the top γ% bins. Although the weights for cad and cpd can be
adjusted for different targets, we set them equal in the experiment
for simplicity.

The overlap cost cov is defined as the total area of overlapped
cells times the total number of pins divided by row height. As the
overlapped cells need to be inserted to the cell pool which results
in the inaccuracy of wirelength cost computation, fewer pins are
preferred for less contribution to the wirelength cost.

There are some hard constraints for a candidate position that lead
to invalidate this candidate. Each overlapped cell must be no larger
than current cell; otherwise, it is even more difficult to find legal
positions for those overlapped cells. The overlapped cells must not
be moved yet in current pass, because each cell can only move once
within each pass of iteration.

7) Various Optimization Modes: The Chain Move algorithm
can be configured for various modes, such as overlap reduc-
tion, wirelength minimization and density recovery. For over-
lap reduction mode, the main difference lies in the function
BacktraceToBestEntry which will not be called in overlap
reduction mode, because we observe that applying all the chain
moves removes most of the overlaps regardless of potential wire-
length degradation. Empirically we often still get some wirelength
improvements. In this mode, there is an additional part of displace-
ment cost added to Equation (5). The purpose of the displacement
cost is to reduce the perturbation to the global placement solution.

In wirelength minimization mode, we also perform local clustering
of horizontally abutting cells in every odd iteration. For any pair of

single-row height cells ci and cj which horizontally abut to each
other, if they share at least one net and either of them is located at
the boundary of the bounding box of the shared net, we cluster them
and merge their nets into the new cluster, as the bounding box of
the shared net is likely to achieve further reduction by moving both
cells together. The process starts from scanning cells from left to
right in each placement row and an existing cluster is also allowed to
merge with another cell to form a larger cluster. We avoid any cluster
which involves more than 5 cells because large clusters are typically
difficult to find available locations without large perturbation to other
cells. The clustering scheme is performed in alternative iterations
(e.g., every odd iteration) because we expect in every even iteration
the flat chain moves to perturb the potential clustering solutions
which avoids to fall into local optimum quickly. This is inspired by
the coarsening and uncoarsening scheme in partitioning algorithms
like hMetis [24]. After chain move iterations, we fix multiple-row
height cells and perform conventional global move to single-row
height cells for further wirelength improvements. This incremental
step usually converges in 1 or 2 iterations.

In density recovery mode, we perform the Chain Move algorithm
on cells in those densest bins (e.g., top 20% dense bins) and increase
the weight of density cost in Equation (5) (i.e., α = 10, β = 2).
The function ComputeSearchRegion returns a large region
centered by the current position of the cell instead of computed
from its optimal region which is usually congested. In the function
BacktraceToBestEntry, we allow small amount of wirelength
degradation (e.g., 0.5% in the experiment) for density improvement.

B. Ordered Double-Row Placement

The ordered single-row placement has been well explored in
detailed placement for wirelength minimization and legalization
[17], [20], [25]–[28]. There are also many single-row algorithms
designed for manufacturability compliance, such as multiple pattern-
ing lithography, FinFET process and E-beam lithography [29]–[38].
The problem can be formulated into a dual min-cost flow problem
that can be solved in O(n2logm2) time complexity for wirelength
minimization [25], where n is the number of cells in a row and m is
the number of nets involved. The runtime is reduced to O(m logm)
by the clumping algorithm from [26]. If each cell in a row has
a maximum displacement M , the problem can be transferred to
a shortest path problem and a dynamic programming (DP) based
algorithm is able to solve the problem in O(M2n) [20], [33]. It can
be further improved to O(Mn) by exploiting the monotonicity and
pruning the solution space [37]. However, most of these algorithms
only focus on single-row placement and are not able to deal with
multiple-row height cells. Here we define an ordered double-row
placement problem as follows.

Problem 2 (Ordered Double-Row Placement (ODR)). Given two
rows of cells that are ordered from left to right in each row,
horizontally move the cells to optimize HPWL without ruining the
order of cells in each row.

Please note that the two sequences of cells may contain multiple-
row height cells, shown as Fig. 5. Here are several definitions to the
cells in the double-row placement problem.

Definition 4 (Double-Row Region Rdr). The rectangular region
defined by the target two rows to be solved.

The target rows to be solved by double-row placement form
a rectangular box. The region defined by the other rows will be
referred to as a region outside the double-row region, denoted by
Rdr .
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Fig. 5: Example of (a) an ideal case in ordered double-row
placement (b) a general case with large splitting cells and crossing
cells such as cells e and j.

Definition 5 (Splitting Cell). Any multiple-row height cell spans
both rows in Rdr .

In Fig. 5, cells e and i cover both lower and upper row in Rdr ,
so they are considered as splitting cells.

Definition 6 (Crossing cell). Any multiple-row cell spans only one
of the two rows in Rdr .

Cells like g and j in Fig. 5 either take the lower or upper row in
Rdr , and also intersect with Rdr . They are considered as crossing
cells.

There are several cases to this problem. The ideal case is that the
double-row placement problem only consists of single-row height
cells and double-row height splitting cells, which means all the cells
will lie in Rdr , shown as Fig. 5(a). Two splitting cells e and i
separate the each row into three parts, i.e. partition 1, 2, and 3.
But this is not often true due to the existence of crossing cells and
large splitting cells. Fig. 5(b) gives a general case for the double-
row placement problem where some splitting cells and crossing cells
span more than two rows. In this case where cells e, g, and j spread
out of the rows, their movements must keep the order within the
two rows and not cause any overlap in the other rows. We will first
explain the algorithm with the ideal case in Fig. 5(a) and extend
it to handle the general cases. For simplicity, we further assume
in the ideal case, there is no inter-row connection between cells in
the lower and upper row within each partition. The general double-
row placement problem without ordering constraints is very difficult,
since the general single-row placement problem is already known as
NP-hard [39].

1) Nested Shortest Path Problem: We first formulate the ordered
double-row placement problem into a nested shortest path problem
with outer and inner level. Then we solve it with a nested dynamic
programming algorithm. TABLE II gives the notations used in the
ordered double-row placement problem. We define the maximum
displacement M such that each cell has K = 2M + 1 displacement
values. Let zij denote the jth position for splitting cell zi. Let r be
the number of splitting cells in Rdr , b be the number of cells in the
lower row of a partition, and t be the number of cells in the upper
row of a partition.

The key observation to the ordered double-row placement problem
is the independence of sub-problems within each partition providing
the positions of splitting cells fixed. For instance, the sub-problem for
cells in partition 1 of Fig. 5(a) becomes independent as long as the
position of splitting cell e is determined. Similarly, the sub-problem
in partition 2 only relies on the positions of splitting cells e and i.

TABLE II: Notations in Ordered Double-Row Placement

M Maximum displacement for a cell.
di The displacement of cell ci, −M ≤ di ≤M .
zi A splitting cell in the splitting cell set SC.
yi A crossing cell in the crossing cell set CC.
vi A single-row height cell or crossing cell in the lower

row of a partition.
ui A single-row height cell or crossing cell in the upper

row of a partition.
PCi The set of cells in the partition between splitting cell

zi−1 and zi.

Therefore, if we can determine the positions of the splitting cells,
it is possible to solve the corresponding independent sub-problem.
With such observation, we formulate a nested shortest path problem
shown as Fig. 6, where we solve the positions of all the splitting
cells with an outer-level shortest path problem whose edge weights
are determined by a set of inner-level problems.

Fig. 6(a) gives the graph representation of the outer-level shortest
path algorithm where each node denotes a candidate position of
a splitting cell. We need to find the shortest path from s to t.
However, the weights of edges in Fig. 6(a) are not determined yet
because the minimum placement cost for cells within each partition
is still unknown. With the previous independence property, we can
compute the weight of any edge zi−1,k → zij by solving the inner-
level problem shown in Fig. 6(b). The inner-level problem consists
of two shortest path problems for the lower and upper row in the
partition. These two shortest path problems are independent due to
the assumption in ideal case that there is no inter-row connection in
a partition. Node zi−1,k and zij serve as the starting and terminating
node in the inner-level problem.

2) Nested Dynamic Programming: In general any algorithm
that solves shortest path can be applied to the nested shortest
path problem defined above. For efficiency, we adapt the dynamic
programming algorithm in [37] to solve the nested shortest path
problem in the ordered double-row placement, which results in
a nested dynamic programming scheme. Algorithm 2 gives the
skeleton of the nested dynamic programming algorithm. To highlight
the nesting scheme, we omit the details that are the same as the
ordered single-row placement and only keep the simplified key
steps. The algorithm calls the function SolveOuterLevel to
solve the outer-level shortest path problem. The kernel procedure
of SolveOuterLevel lies in the three loops from lines 7 to
15. The cost of each candidate position is evaluated in lines 10 to
12 where function ComputeDPCost computes the cost for zi−1

and zij themselves and function SolveInnerLevel solves the
inner-level problem for cost in the partition. Within a partition,
SolveInnerLevel computes the cost of lower and upper row
separately with the cost function ComputeDPCost and return
the total cost. Since the dynamic programming for the inner-level
problem is the same as single-row version in the ideal case, the
details are omitted.

The wirelength cost computed in ComputeDPCost adopts the
cost function defined in [18] for single-row placement. If a cell ci
connects to another cell cj in the same row and cj is on the left of
ci, we assume the position of cj is on the left boundary of the row
for wirelength cost computation; if cj is on the right of ci in the
same row, the position of cj is assumed to be the right boundary
of the row. For any cj in a different row to ci, its actual position is
used. This wirelength cost turns out to be equivalent to HPWL in
single-row placement and the equivalence holds in the ideal case of
double-row placement as well.

Lemma 2. Algorithm 2 gives optimal solution for the wirelength
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Fig. 6: (a) Outer-level shortest path problem that solves the positions of splitting cell z1, z2, . . . , zr . The weights of edges in each partition
need to be computed by solving the inner-level problems and (b) an inner-level problem computes the edge weight of zi−1,k → zij by
solving the shortest path problem of lower and upper row in the partition with given positions of the splitting cells zi−1,k and zij .

Algorithm 2 Ordered Double-Row Placement
Require: Two ordered sequences of cells.
Ensure: Shift cells to minimize wirelength.

1: . . . // prepare data SC
2: SolveOuterLevel(SC);
3: return
4:
5: function SolveOuterLevel(SC)
6: . . .
7: for each zi ∈ SC, i← 2 to r do
8: for each di ∈ [−M,M ] do
9: for each di−1 ∈ [−M,M ] do

10: costi(di)←ComputeDPCost(di−1, di)
11: +SolveInnerLevel(di−1, di, PCi);

. process costi(di) in DP
12: end for
13: end for
14: end for
15: . . . // apply solution
16: end function
17:
18: function SolveInnerLevel(di−1, di, PCi)
19: cost1 ← solve DP for lower row in PCi;
20: cost2 ← solve DP for upper row in PCi;
21: return cost1 + cost2;
22: end function

cost to the ordered double-row placement under the ideal case.

The proof is omitted here due to page limit.
The runtime for Algorithm 2 turns out to be O(M2n) where n

is the total number of cells in Rdr . Considering the r+ 1 partitions
defined by r splitting cells, within each partition PCi, the lower
row contains bi cells and the upper row contains ti cells. Assume
ComputeDPCost takes constant time and n � r. The dynamic
programming scheme takes O(Mn) to solve single-row placement
[37]. So solving partition PCi for one time takesO(Mbi)+O(Mti)
in SolveInnerLevel. The runtime complexity for Algorithm 2
can be computed as follows,

complexity ≈
r+1∑
i=1

M · (O(Mbi) +O(Mti))

= O(M2(n− r)) ≈ O(M2n).

(7)

3) Extension To General Cases: The potential overlaps to Rdr
must be considered due to the existence of large splitting cells and
crossing cells in a general case. During the ordered double-row
placement, any position of a cell overlapping with any placement
site already taken by other cells in Rdr should be avoided; i.e. assign

a very large cost to such positions. We can add a large penalty to
a position in ComputeDPCost without losing the optimality since
such penalty only depends on the position of the cell itself.

However, under a general case, the wirelength cost computed by
ComputeDPCost in the inner-level problem is no longer always
equivalent to HPWL. because a cell in the lower row of a partition
may have connection with another cell in the upper row. Such
inaccuracy from the wirelength cost usually comes from short inter-
row connections, so the overhead is small. Besides wirelength, the
nested dynamic programming scheme can also be adapted to support
other objectives, such as displacement and local congestion.

Although ordered double-row placement can minimize wirelength,
it may squeeze the whitespaces in dense regions and result in con-
gestion. To mitigate such side effects, we fix the cells in congested
regions and only move cells in low-density regions. In general the
algorithm can also be applied to resolve overlaps for legalization,
but the computation effort becomes an issue for layouts with large
amount of overlaps due to its quadratic relation with maximum
displacement. Therefore, we adopt it as an incremental optimization
technique for legal designs.

C. Ordered Multiple-Row Placement

Despite various algorithms designed for single-row placement
mentioned in Section III-B, the dual network flow formulation [25]
is flexible enough to handle multiple rows at the same time for total
displacement minimization or wirelength minimization while it is
not limited by any constraint from multiple-row height cells. The
network flow can be solved by various algorithms for dual min-
cost flow with proper graph transformation. Although there are brief
theoretical derivations for this formulation [25], [40], its pratical
insight and details remain to be explored.

We extend the definition of ordered multiple-row placement from
ordered double-row placement problem.

Problem 3 (Ordered Multiple-Row Placement (OMR)). Given ar-
bitrary number of rows of cells that are ordered from left to right in
each row, horizontally move the cells to optimize total displacement
or HPWL without ruining the order of cells in each row.

The formulation of OMR is quite different from ODR. Firstly,
supposing that OMR solves R rows simultaneously, it returns the
optimal solution of cells within the entire region of R rows. If ODR
is used to solve the same region, it needs to run dR

2
e times. In

other words, ODR has to divide the region before solving any region
with R > 2. When the objective includes wirelength which involves
connections of cells in different rows, such division loses optimality



even if ODR returns optimal solutions of every two rows. Secondly,
current algorithm for ODR is realized by enumerating discrete
displacement sites for each cell in a nested dynamic programming
scheme. In spite of its flexibility in the objective, its runtime
complexity is quadratically related to maximum displacement M ,
while in the network flow formulation of OMR, the maximum
displacement M does not have to appear explicitly in the runtime
complexity. We do not need to trade-off M for runtime at the cost
of quality degradation. Thirdly, while ODR returns optimal solutions
in ideal case, it loses optimality in general cases as mentioned
in Section III-B3. The network flow algorithm can solve OMR
optimally even for general cases. Although generally most multiple-
row height cells are double-row height cells, OMR is expected
to outperform ODR if OMR is affordable in terms of reasonable
runtime.

1) Displacement Minimization: The problem to minimize total
displacement can be written as following mathematical program,

Pm : min
∑
i∈N

|xi − x0
i |, (8a)

s.t. xi − xj ≤ −wi, ∀(i, j) ∈ O, (8b)

li ≤ xi ≤ ui, ∀i ∈ N, (8c)

where N denotes the set of cells, O denotes the set of cell pairs in
which the order should be maintained without overlap, xi denotes
the horizontal position of cell i, wi denotes its width, and x0

i denotes
its original position. The objective in Equation (8a) minimizes total
displacement in L1 norm. The constraint (8b) ensures overlap free
between horizontally abutting cell i and j with wi as the width
of cell i. The constraint (8c) limits cell i to be within a movable
range. We can further remove the absolute operation in the objective
by introducing additional variable dli and dri for each cell and add
constraints,

dli − xi ≤ 0, ∀i ∈ N, (9a)

dli ≤ x0
i , ∀i ∈ N, (9b)

xi − dri ≤ 0, ∀i ∈ N, (9c)

dri ≥ x0
i , ∀i ∈ N, (9d)

where Equations (9a) and (9b) guarantee that dli is no larger than the
smaller one of xi and x0

i , and Equations. (9c) and (9d) guarantee
that dri is no smaller than the larger one of xi and x0

i . The objective
in Equation (8a) is changed to

min
∑
i∈N

dri − dli. (10)

The bound constraints in Equations (8c), (9b) and (9d) can be
converted to differential constraints by introducing a single variable
x̄ and replace all xi with x′i = xi + x̄, all dli with d′li = dli + x̄, and
all dri with d′ri = dri + x̄. Then the problem Pm(xi, d

l
i, d

r
i ) is trans-

formed to problem P ′m(x′i, d
′l
i , d
′r
i , x̄) with differential constraints

only as follows,

P ′m : min
∑
i∈N

d′ri − d′li , ∀i ∈ N, (11a)

s.t. d′li − x′i ≤ 0, ∀i ∈ N, (11b)

d′li − x̄ ≤ x0
i , ∀i ∈ N, (11c)

x′i − d′ri ≤ 0, ∀i ∈ N, (11d)

x̄− d′ri ≤ −x0
i , ∀i ∈ N, (11e)

x′i − x′j ≤ −wi, ∀(i, j) ∈ O, (11f)

li ≤ x′i − x̄ ≤ ui, ∀i ∈ N. (11g)

Once problem P ′m is solved, the solutions to Pm can be easily
derived by deducing x̄.

2) Generalized Formulation: We generalize all the variables
x′i, d

′l
i , d
′r
i , x̄ in Formula (11) to πi, introduce bi as the coefficient

of each variable in the objective, and introduce cij as the right hand
side for each differential constraint. Problem P ′m in (11) can be
transformed to problem P(πi, αij) with additional slack variable
αij for each constraint,

P : min
∑
i∈N

biπi +
∑

(i,j)∈E

uijαij , (12a)

s.t. πi − πj − αij ≤ cij , ∀(i, j) ∈ E, (12b)

αij ≥ 0, ∀(i, j) ∈ E, (12c)

where N represents the set of variable πi, E represents the set of
differential constraints, and uij is relatively large compared with
bi. For example, to construct Equation (12a) from the objective
in Equation (11a), the coefficients for d′ri are mapped to bi = 1,
while the coefficients for d′li are mapped bi = −1; to construct
Equation (12b) from Equation (11f), we set cij = −wi, and so
forth.

While problem P matches problem P ′m exactly without variable
αij , the reason of introducing variable αij lies in the fact that the
input placement may not be legal in detailed placement which often
results in infeasible models of problem P ′m, it is more meaningful
to optimize the objective while minimizing the violations to the
constraints. Note that the infeasible model not only comes from
regions with utilization larger than 100%, it may also come from
the regions with utilization smaller than 100% due to the existence
of dead spaces introduced by multiple-row height cells [12], [13].
Thus the objective here is to optimize total displacement or HPWL
with minimum overlaps between cells. If problem P ′m is feasible,
then αij = 0 in the optimal solution of problem P due to large
uij and the optimal solutions to both problems are equivalent;
otherwise, problem P is still feasible and return a minimum objective∑
i∈N biπi +

∑
(i,j)∈E uijαij with some non-zero αij indicating

the violations to some differential constraints. If uij is large enough,
such violations can be minimized. For an extreme case, when uij
goes to infinity, problem P goes unbounded when problem P ′m is
infeasible. In the experiment, we give uij a large enough value such
as twice of the width of a placement row.

The dual problem of problem P is associated to the min-cost flow
problem as follows [40],

D : min
∑

(i,j)∈E

cijfij , (13a)

s.t.
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = −bi, ∀i ∈ N, (13b)

0 ≤ fij ≤ uij ,∀(i, j) ∈ E, (13c)

where fij denotes the flow on arc (i, j), cij denotes the cost of flow,
uij denotes the flow capacity on an arc, and −bi denotes the supply
of vertex i. Fig. 7(a) shows an example of mapping from problem P
to a network flow graph where the variable πi is associated with the
mass balance constraint of vertex i and its solution can be obtained
from the vertex potential.

An example of ordered multiple-row placement and its corre-
sponding network flow graph are shown in Figs. 7(b) and 7(c)
with total displacement minimization. Each cell i introduces three
vertices where vertices dli and dri associate with variables d′li and
d′ri in problem P ′m (11). Vertex xi associates with variable x′i. The
additional vertex introduced by variable x̄ is split into vertice s
and t for typical representation of network flow graph. The dashed
line between s and t means they can be either merged or kept
separate for min-cost flow algorithm. Each differential constraint
in Equation (12b) corresponds to an arc with cost cij and capacity
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Fig. 7: (a) Mapping problem P to vertices and arcs in a network
flow graph where each vertex has a supply value and each arc has
a cost value and a capacity value. Example of (b) three cells for
ordered multiple-row placement problem P ′m in Equation (11) and
(c) corresponding network flow graph with non-zero vertex supply
values and non-zero arc cost values labeled, while arc capacity values
are not labeled.

uij . The non-zero supply values are labeled next to each vertex
and the overall supply is zero. Non-zero costs are labeled along
with arcs. The capacity uij of each arc (i, j) is not shown in the
figure for brevity. It can be an arbitrary large enough number to
avoid violations of constraints in problem P as aforementioned. By
solving the network flow, we can extract the potential of each vertex
which is associated with the solution of πi to problem P .

3) Wirelength Minimization: As mentioned, the ordered multiple-
row placement problem with network flow formulation is also
capable of minimizing HPWL.

Ph : min
∑
i∈E

ri − li, (14a)

s.t. li − xj ≤ oj , ∀i ∈ E, j ∈ Ei, (14b)

xj − ri ≤ −oj , ∀i ∈ E, j ∈ Ei, (14c)

(8b) ∼ (8c),

where E denotes the set of interconnections, Ei denotes the set of
cells in net i. Variables li and ri denote the left and right boundary
of the bounding box of net i, repsectively. Variable oj indicates the
pin offset of cell j in net i. Similar transformation as above can
be applied to construct an optimization problem with differential
constraints only such that it can be transformed to the min-cost flow
problem.

In general it is expensive to solve the ordered multiple-row
placement for full layout, but we can divide the layout into row
chunks where each chunk takes R rows to trade performance for
runtime. For multiple-row height cells at the boundary of each chunk,
we treat them as fixed. Suppose there are R̂ rows in the layout.
Then we need to invoke the min-cost flow algorithm for d R̂

R
e times.

Problem Ph (14) generalizes and extends the ordered double-row
placement problem in Section III-B. It is able to solve more than
two rows simultaneously and its runtime complexity is correlated

TABLE III: ISPD 2005 Benchmark Suite [11]

Design Size DH Util Target Util

adaptec1 211K 30.18% 90.84% 91%
adaptec2 255K 30.16% 89.12% 90%
adaptec3 452K 30.11% 78.44% 80%
adaptec4 496K 30.19% 67.70% 75%
bigblue1 278K 30.14% 73.44% 80%
bigblue2 558K 32.90% 68.99% 75%
bigblue3 1097K 30.31% 91.10% 91%
bigblue4 2177K 30.26% 73.88% 75%

with number of cells and nets rather than maximum displacement
M , which indicates potential tradeoffs under different configurations
of R.

There are various min-cost flow algorithms like network simplex,
cost scaling, capacity scaling, etc. [41], while not all of them support
negative costs on arcs. To construct the network flow graph that
is compatible to different algorithms, the negative costs can be
removed by arc reversal [40] where we can flip the sign of arc
cost by adjusting the supply values of its two vertices. With the
flexibility of the network flow formulation, the technique can be
applied to either legalization stage to remove as much overlap as
possible, or post refinement stage to further improve wirelength.
While the technique is not limited to constraints from multiple-row
height cells, it might suffer from efficiency issues if simply applied to
full layout. We demonstrate the performance, efficiency and various
tradeoffs of the multiple-row placement in Section IV. In addition,
both Equation (11) and Equation (14) describe linear programs, so
we also compare the efficiency of network flow algorithms with
linear programming algorithms. It needs to mention that since the
row based placement techniques do not change the vertical positions
of cells, they follow the power line alignment constraints as long as
there is no violation in the input.

IV. EXPERIMENTAL RESULTS

Our algorithm was implemented in C++ and tested on an eight-
core 3.40 GHz Linux server with 32 GB RAM. GUROBI [42] is
used as the LP solver and LEMON [43] is used as the min-cost
flow solver. Single thread is used in the experiment. We validate our
algorithm on two sets of benchmarks. The first set of benchmarks
are generated from ISPD 2005 placement benchmark suite by [11]
with only single-row and double-row height cells. Double-row height
cells are randomly generated from about 30% single-row height
cells. The state-of-the-art wirelength-driven global placer POLAR
[9] is used for global placement. We obtain the binary from [11]
and all the results are collected from our machine. The second set of
benchmarks are modified from ICCAD 2014 placement benchmark
suite [44] in which we resize cells such as flip-flops to double-
row height and some large cells such as NAND4 X4 and INV X32
to three-row and four-row height cells. We adopt the evaluation
script from ICCAD 2013 placement contest to verify the legality,
wirelength and density of our placement solution. The bin sizes are
set to 9×9 row heights according to the evaluation script. The target
pin density dpt for APU evaluation is set to the average pin density
of top 60% densest bins. Benchmarks and programs are released at
link (http://www.cerc.utexas.edu/utda/download/MrDP/index.html).

TABLE III shows the statistics of ISPD 2005 benchmarks and
TABLE IV shows the comparison between our algorithm, [45] and
[11]. The sizes of the designs vary from 200K to 2M with utilizations
from 67.70% to 91.10%. The ratio of multiple-row height cells
are shown as “DH”. The wirelength for the input global placement
solution is shown as “GP”, which is not legalized yet. The results

http://www.cerc.utexas.edu/utda/download/MrDP/index.html


of our algorithm is shown as “MrDP”. Runtime is shown as “CPU”
in seconds.

Since [11] only considers wirelength, we first compare wirelength
in which MrDP achieves smaller HPWL in all benchmarks on an
average of 1.2%. We can also see from the table that MrDP can
achieve even more significant improvement in sHPWL, 3.7% on
average, which indicates better cell density in the placement solution.
The ABU penalty from MrDP is 20.2% smaller than that from [11]
and APU penalty shows 13.4% improvement. Although MrDP is
slightly slower than [11], even the largest benchmark with 2 million
cells can be finished within 10 minutes, which is still affordable in
placement.

TABLE V gives experimental results on modified ICCAD 2014
benchmarks. To the best of our knowledge, no published detailed
placers are reported to explicitly handle such benchmarks with
various multiple-row height cells yet. The ratio of multiple-row
height cells varies from 17.17% to 41.09% for different benchmarks,
shown as “MH”. The average percentage of three-row height cells
and four-row height cells is around 0.1%, which indicates most of
the multiple-row height cells are double-row height cells. We keep
the same target utilizations as the contest setting. The data under
“Initial” denotes the evaluation of initial solutions that still contain
overlaps. We can see that MrDP achieves 3.2% improvement in
HPWL and 4.7% improvement in sHPWL. The cell and pin density
penalty also decrease by 42.6% and 20.0% respectively from initial
placement, which is significantly improved from [45]. We ascribe the
improvement in density to the ordered multiple-row placement and
density recovery mode of chain move, where the former achieves
more wirelength reduction than ordered double-row placement and
thus the latter has more margin to smooth density with affordable
wirelength increase.

A. HPWL and Runtime Breakdown

Fig. 8 shows the HPWL improvement and runtime breakdown
of three benchmarks, b19, leon2 and netcard. The HPWL improve-
ment in Fig. 8(a) is the cumulative normalized improvement after
executing each step in the flow. “Chain Move WL” denotes the chain
move in wirelength minimization mode and “Chain Move Density”
denotes the density refinement step. It is shown generally chain
move in wirelength minimization mode gives the most of wirelength
improvement, which also takes most part of the overall runtime
(around 60% in Fig. 8(b)), while OMR can further reduce the
wirelength after the convergence of chain move with small runtime
overhead (around 10% in Fig. 8(b)). The performance of OMR varies
from benchmark to benchmark; e.g., in benchmark b19, it improves
the wirelength by around 1.5%, while in benchmark netcard, the
improvement is only around 0.1%. The density refinement step
slightly degrades wirelength for density improvement.

B. Visiting Order of Cells in Chain Move

Fig. 9 shows the comparison of various visiting order of cells
in chain move mentioned in Section III-A4. We can see that it is
not a good strategy to fix the visiting order of cells, while random
shuffling or sorting by distances to optimal regions of cells gives
beter wirelength. The results indicate that it is better to perturb the
visiting order of cells in each iteration for convergence to better
wirelength.

C. Trade-offs in Ordered Double-row Placement

We also study the trade-off between performance and runtime for
different maximum displacement M in ODR in Fig. 10. With the
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visiting order of cells is randomly shuffled during each iteration;
“Dist2OptRegion” denotes that cells are ordered in descending order
of their distances to their optimal regions during each iteration.
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TABLE IV: Comparison of our algorithm with Wu et al. [11]

Design
HPWL sHPWL ABU penalty APU penalty CPU

GP [11] [45] MrDP GP [11] [45] MrDP [11] [45] MrDP [11] [45] MrDP [11] [45] MrDP

adaptec1 95.57 91.35 91.03 91.00 134.45 96.22 96.88 96.66 0.0533 0.0642 0.0622 0.8943 0.7668 0.7724 38.3 44.2 43.9
adaptec2 105.75 105.66 104.07 104.14 121.10 107.40 105.68 104.94 0.0165 0.0154 0.0077 2.2661 2.0553 2.0383 42.5 48.6 49.7
adaptec3 241.83 242.13 237.69 237.94 305.53 273.94 267.20 265.51 0.1314 0.1242 0.1159 2.6111 2.2966 2.3002 82.8 84.7 87.9
adaptec4 206.81 208.92 204.94 205.12 279.16 253.97 240.62 238.33 0.2156 0.1741 0.1619 2.4462 2.0664 2.0571 83.6 88.6 92.7
bigblue1 116.95 113.09 112.48 112.68 134.39 133.34 127.03 124.28 0.1791 0.1293 0.1029 0.5442 0.3683 0.3625 36.9 52.6 56.0
bigblue2 159.59 160.86 158.11 158.15 230.82 197.11 190.54 189.58 0.2253 0.2051 0.1987 1.2189 1.0881 1.0916 78.3 101.1 101.0
bigblue3 413.75 418.69 412.01 411.73 499.20 431.31 428.86 428.17 0.0301 0.0409 0.0399 1.9053 1.7502 1.7494 224.9 264.9 264.6
bigblue4 881.32 882.51 876.84 877.40 1166.86 1099.14 1049.69 1040.15 0.2455 0.1971 0.1855 0.9599 0.7562 0.7521 322.3 438.1 478.0

avg. 277.69 277.90 274.65 274.77 358.94 324.05 313.31 310.95 0.1371 0.1188 0.1093 1.6057 1.3935 1.3904 113.7 140.4 146.7
ratio 1.000 1.001 0.989 0.989 1.000 0.903 0.873 0.866 1.000 0.867 0.798 1.000 0.868 0.866 1.000 1.235 1.291

TABLE V: Experimental results on modified ICCAD 2014 benchmarks

Design Size
MH Util Target HPWL sHPWL ABU APU CPU
% % Util% Initial [45] MrDP Initial [45] MrDP Initial [45] MrDP Initial [45] MrDP [45] MrDP

vga lcd 165K 21.99 54.98 70 4.19 4.02 4.02 4.39 4.20 4.15 0.0471 0.0444 0.0331 0.1310 0.1184 0.1090 27.3 26.7
b19 219K 27.93 52.56 76 3.32 3.17 3.14 3.47 3.27 3.20 0.0440 0.0295 0.0171 0.2750 0.2247 0.1889 31.9 34.3

leon3mp 650K 35.61 51.78 70 15.19 14.34 14.31 15.76 14.52 14.36 0.0377 0.0121 0.0040 0.1623 0.1107 0.1170 261.4 248.9
leon2 795K 41.09 59.82 70 31.97 31.32 31.22 33.88 32.94 32.53 0.0595 0.0517 0.0421 0.1087 0.0779 0.0661 405.8 393.1
dist 133K 26.34 65.23 75 5.06 4.81 4.82 5.06 4.81 4.82 0.0000 0.0000 0.0000 0.1704 0.1203 0.1199 17.0 17.8
mult 160K 14.81 60.14 65 2.95 2.76 2.76 3.08 2.84 2.84 0.0427 0.0300 0.0271 0.1224 0.1547 0.1583 20.7 20.9

netcard 961K 17.17 47.43 72 41.13 40.23 40.25 43.18 42.24 41.77 0.0498 0.0499 0.0379 0.1441 0.1364 0.1322 296.1 288.4

avg. - - - - 14.83 14.38 14.36 15.54 14.97 14.81 0.0401 0.0311 0.0230 0.1591 0.1347 0.1274 151.4 147.2
ratio - - - - 1.000 0.970 0.968 1.000 0.963 0.953 1.000 0.775 0.574 1.000 0.847 0.800 1.00 0.97

increase of M , wirelength drops while the runtime rises quadrati-
cally. The wirelength starts to saturate after M goes larger than 8.
To trade-off runtime and performance, we set M to 8 placement
sites in the experiment.

D. Trade-offs in Ordered Multiple-row Placement
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Fig. 11: Comparison between ODR (maximum displacement M = 8
and M = 16) and OMR (R = 18) on ICCAD 2014 benchmarks.
(a) HPWL improvement and (b) runtime.

Although ODR is able to improve wirelength efficiently, it is
limited to solve two rows at a time. On the other hand, the network

flow formulation in Section III-C is able to solve multiple rows
simultaneously. We show the comparison of wirelength and runtime
between ODR and OMR in Fig. 11. Since the solution space of
ODR is related to the maximum displacement M , we try various
M values in the experiment. The row chunk size R for OMR is set
to 18. In the experiment, OMR can on average achieve 3.6x HPWL
improvement than ODR with M = 8 and 3.4x HPWL improvement
than that with M = 16, while the average runtime for OMR is
comparable to ODR with M = 16.

Fig. 12 gives the trade-offs between wirelength and runtime for
R. With the increase of R, the wirelength drops while the runtime
almost increase linearly. Considering that wirelength optimization
in OMR may pack cells together resulting in poor density cost,
we choose R = 18 with affordable runtime and reasonable wire-
length improvement. With the HPWL improvement from OMR,
there is more margin for the follow-up density recovery step in
Section III-A7 to improve density while allowing slight wirelength
degradation, which explains the improvements of ABU and APU
from [45] in TABLE IV and TABLE V.

The comparison of runtime between various min-cost flow algo-
rithms and linear programming is shown in Fig. 13. The efficiency of
min-cost flow algorithms varies from problem to problem. Previous
study shows that cost scaling algorithm in general is suitable to large
graph with relatively low degree, while network simplex algorithm
is suitable to small graph with high degree [41]. In our experiment,
network simplex is the most efficient for OMR among all the
algorithms including linear programming (on average 2.2x slower).
The vertices with large degree are probably from vertices to denote
left and right boundaries of nets which involve in a lot of cells. The
capacity scaling algorithm which generalizes the successive shortest
path algorithm turns out to be the slowest (on average 209.0x slower
than network simplex) due to large number of arcs and large capacity
values on arcs. Actually empirical results from our experiments show
almost linear correlation between the runtime of network simplex
and the sizes of benchmarks. Therefore, we adopt network simplex
algorithm to solve the min-cost flow problem.

It needs to mention that our objective aims at wirelength and den-
sity optimization under given maximum displacement constraints,
while the problem in previous legalization works like [4] tries to
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Fig. 12: Trend of HPWL and runtime with R for OMR based on
the results of benchmark leon2.

remove overlaps and minimize total displacement. The techniques
proposed here often end up with better wirelength than [4], but larger
total displacement, due to different objectives.
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Fig. 13: Runtime comparison between various min-cost flow algo-
rithms and linear programming to solve OMR with R = 18 on
various sizes of benchmarks from ICCAD 2014 benchmarks. NS:
network simplex; LP: linear programming; COS: cost scaling; CAS:
capacity scaling. Both axes are in log scale for easier analysis.

V. CONCLUSION

In this paper, we have addressed the placement challenges in
advanced technology nodes and proposed a detailed placer for
heterogeneous-sized cells to help resolve these challenges. Three
major techniques have been introduced to generalize the optimiza-
tion of both single-row height cells and multiple-row height cells,
including a chain move scheme to find maximum prefix sum of
wirelength improvement, a nested dynamic programming algorithm
for double-row placement, and a network flow based algorithm
for multiple-row placement. Experimental results demonstrate our
algorithm outperforms the most recent detailed placer for multiple-
row height cells in both wirelength and density.
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