Mixed Precision Neural Architecture Search for Energy Efficient Deep Learning

Chengyue Gong^{*1}, **Zixuan Jiang**^{*2}, Dilin Wang¹, Yibo Lin², Qiang Liu¹, and David Z. Pan²

> ¹CS Department, ²ECE Department The University of Texas at Austin

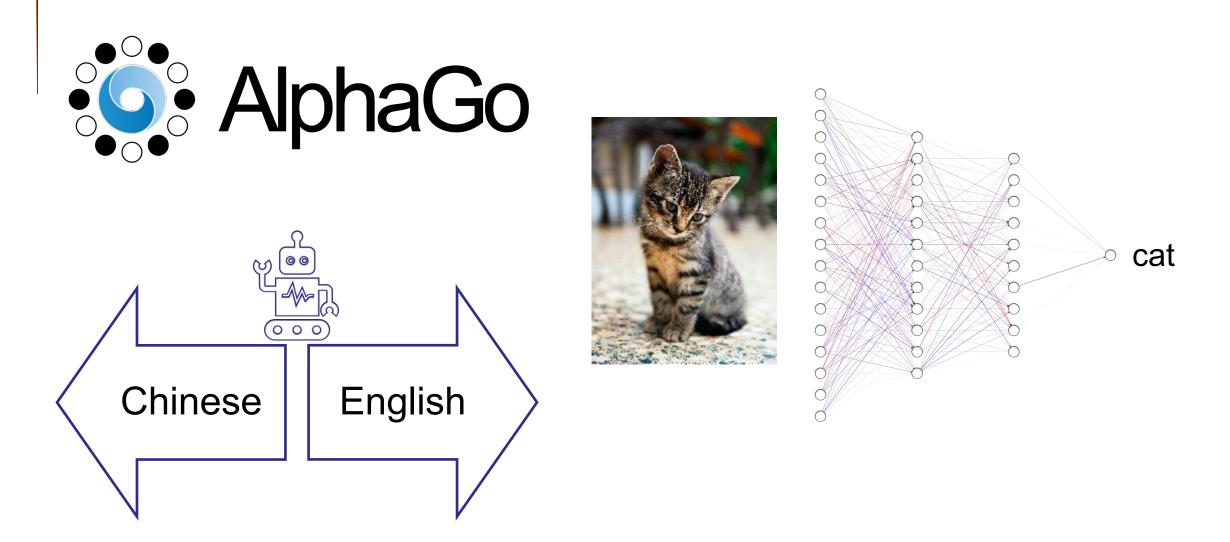
> > * indicates equal contributions

Contents

Introduction

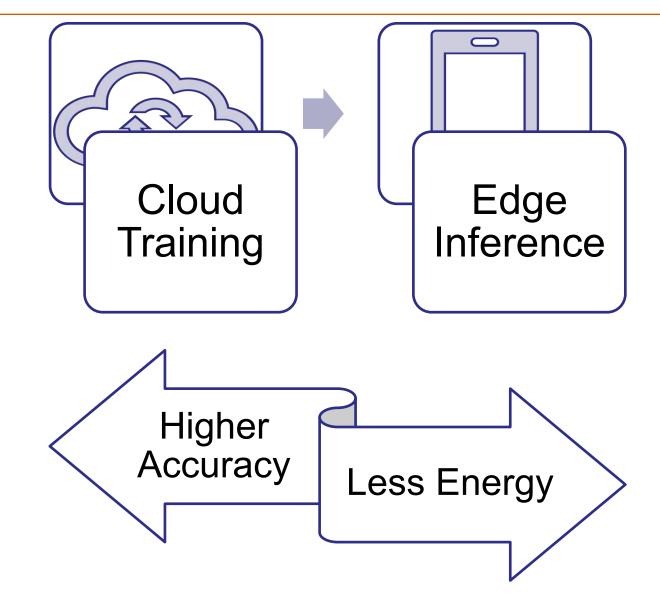
- Our algorithm
- Experimental results
- Conclusion

Success of Machine Learning



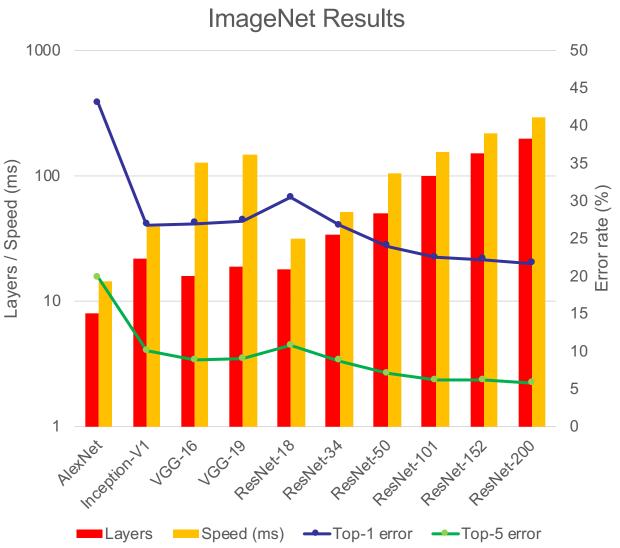
Energy Efficient Computation

- Energy computation, latency, security, etc. are critical metrics of edge inference.
- Tradeoff between accuracy and complexity of models.
- Efficient computation
 - > Neural architecture
 - Quantization

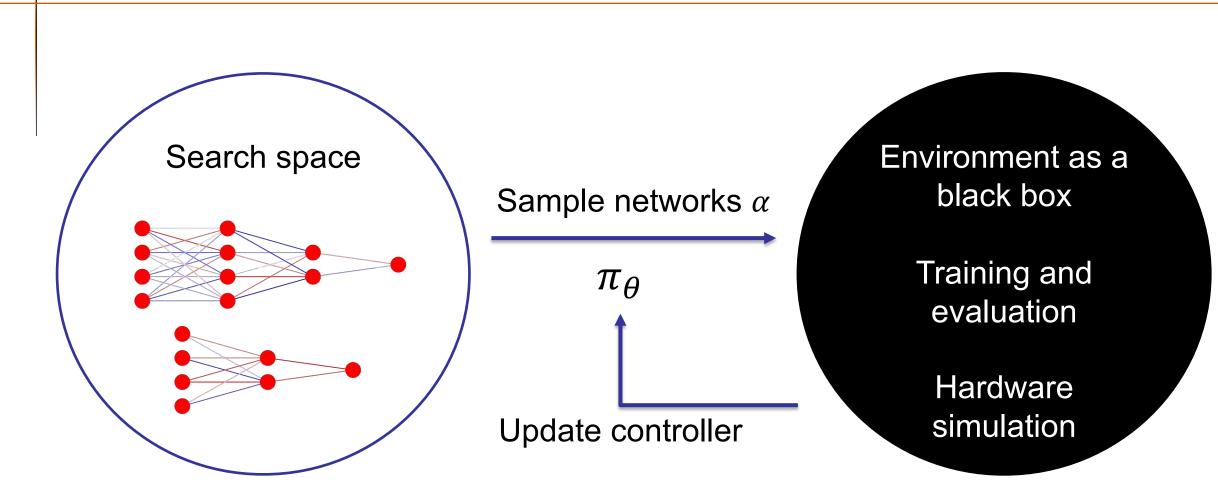


Neural Architecture Design

- Mechanism of neural networks is not well interpreted.
- Designing neural architecture is challenging.
- Can we advance AI/ML using artificial intelligence instead of human intelligence?



Neural Architecture Search

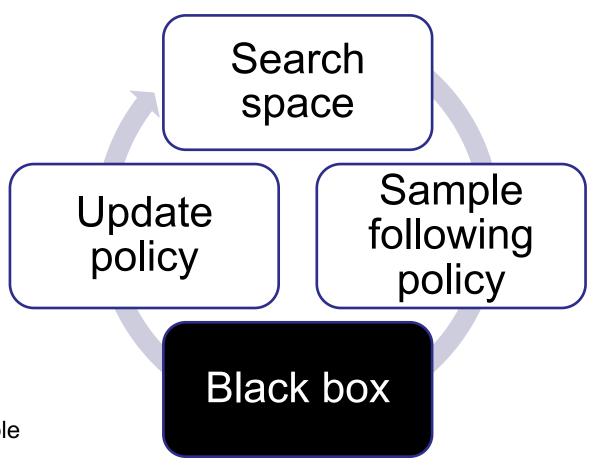


Neural Architecture Search

Black box optimization

- Find the optimal network configuration to maximize the performance
- > Huge search space
- Available methods
 - > Reinforcement learning
 - > Evolutionary algorithm
 - > Differentiable architecture search

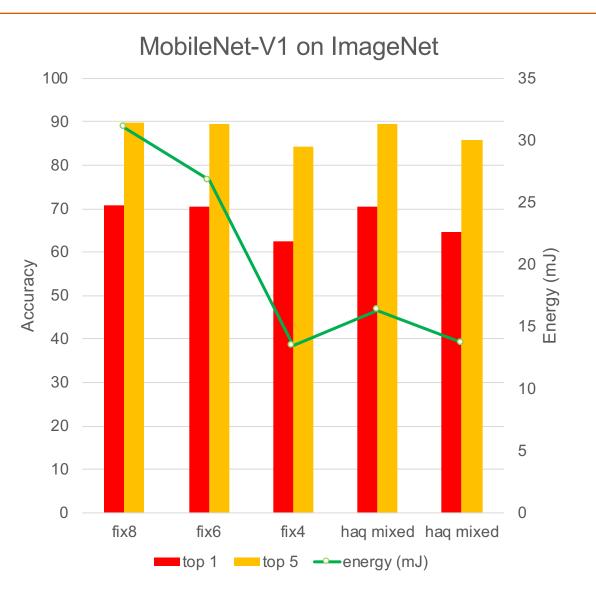
H. Liu, K. Simonyan, and Y. Yang, "Darts: Differentiable architecture search," ICLR 2019.



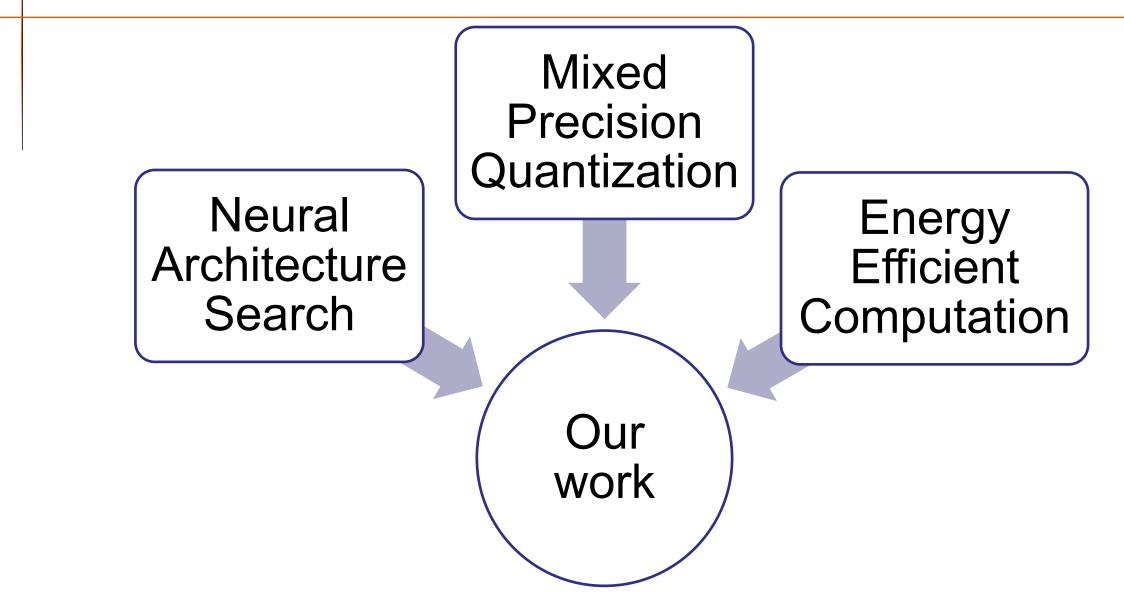
Quantization

- Weights, activations can be quantized due to the inherent redundancy in representations.
- Mixed precision for different layers
 HAQ

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, "HAQ: hardware-aware automated quantization with mixed precision," CVPR, 2019.



Our Work



Contents

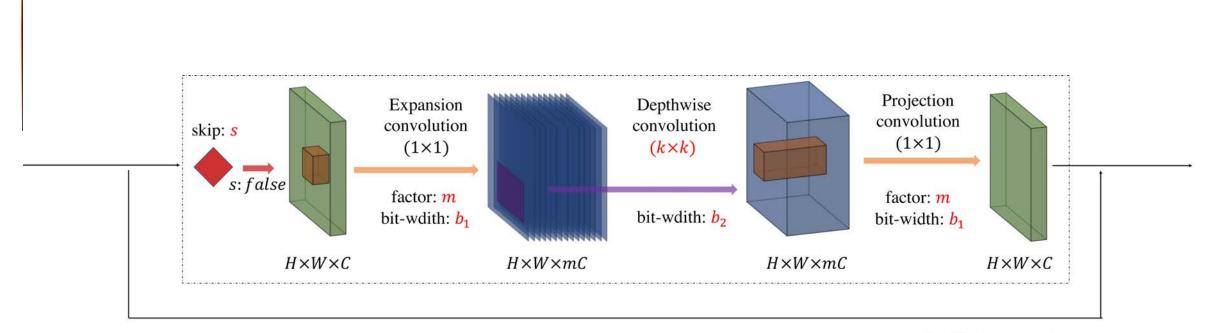
Introduction

Our algorithm

Experimental results

Conclusion

Search Space Basis: MobileNetV2 Block (MB)



Residual connection

expand ratio $m \in \{1,3,6\}$ network connectivity $s \in \{0,1\}$ kernel size $k \in \{3,5,7\}$ layer-wise bitwidths $b_1, b_2 \in \{2,4,6,8\}$

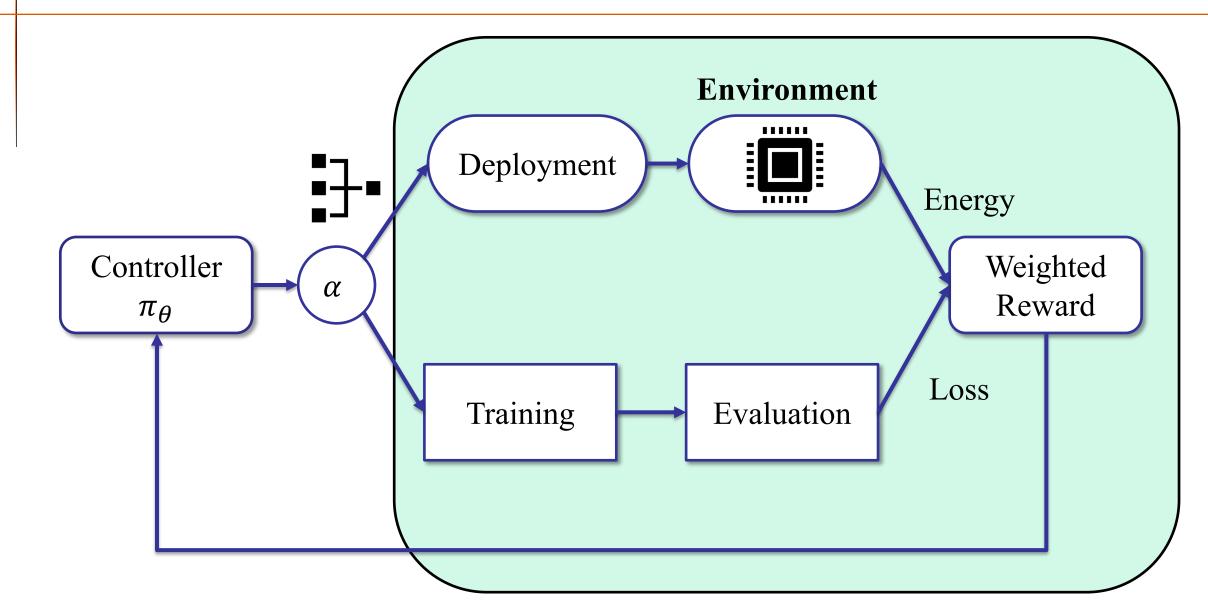
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. MobileNetV2: Inverted residuals and linear bottlenecks. CVPR 2018.

Search Space

Input Shape	Block Type	Bitwidth	#Channels	Stride	#Blocks
224 × 224 × 3	Conv 3 × 3	8	32	2	1
112 × 112 × 32	Search Space block(s, m, k, b_1, b_2)		16	2	1
56 × 56 × 16			24	1	2
56 × 56 × 24	Neural architecture <i>s</i> , <i>m</i> , <i>k</i>		32	2	4
28 × 28 × 32			64	2	4
14 × 14 × 64	Quantization b_1, b_2		128	1	4
14 × 14 × 128			160	2	5
7 × 7 × 160			256	1	2
7 × 7 × 256	Conv 1 × 1	8	1280	1	1
7 × 7 × 1280	Pooling and FC	8	-	1	1

settings 288²² ≈ 1.28×10⁵⁴

Our Framework



Problem Formulation

 Discover neural architectures that minimize the task-related loss while satisfying the energy constraint.

$$\begin{split} \min_{\theta} \mathbb{E}_{\alpha \sim \pi_{\theta}} [L(f_{w^{*}}(\alpha); D_{validate})] & \text{Expectation of loss} \\ s.t. \ w^{*} = \operatorname{argmin} L(f_{w}(\alpha); D_{train}) & \text{Training of NN} \\ \mathbb{E}_{\alpha \sim \pi_{\theta}} J(\alpha) < c & \text{Energy constraint} \end{split}$$

 π_{θ} is the policy with parameter θ

 α represents a neural network with weights w

Problem Formulation

 Discover neural architectures that minimize the task-related loss while satisfying the energy constraint.

$$\min_{\theta} \mathbb{E}_{\alpha \sim \pi_{\theta}} [L(f_{w^{*}}(\alpha); D_{validate})]$$

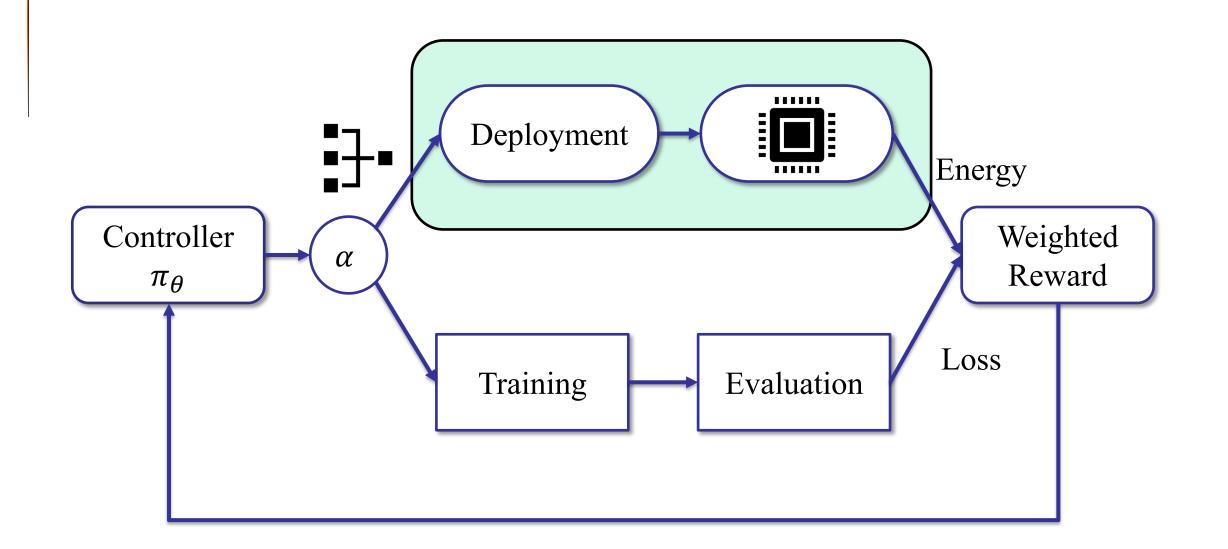
s.t. $w^{*} = \operatorname{argmin} L(f_{w}(\alpha); D_{train})$
 $\mathbb{E}_{\alpha \sim \pi_{\theta}} J(\alpha) < c$

Relaxation

$$\min_{\theta} \mathbb{E}_{\alpha \sim \pi_{\theta}} [L(f_{w^{*}}(\alpha); D_{validate})] + \lambda \max(\mathbb{E}_{\alpha \sim \pi_{\theta}} J(\alpha) - c, 0)$$

s.t. w^{*} = argmin $L(f_{w}(\alpha); D_{train})$

Hardware Environment



REINFORCE algorithm

Policy gradient theorem

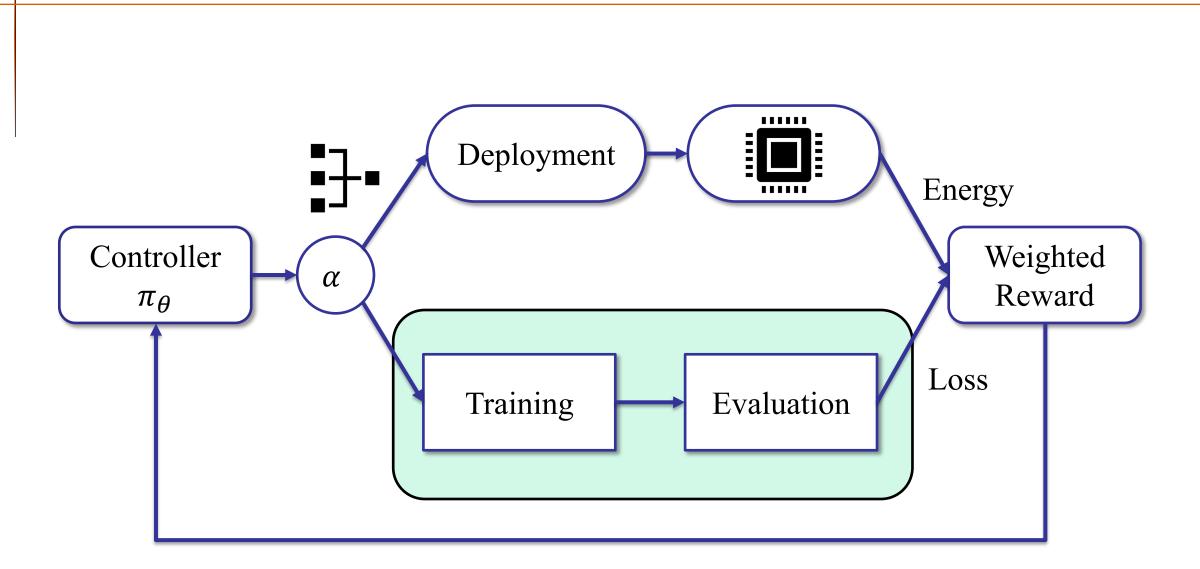
For any differentiable policy π_{θ} , for any policy objective functions *J*, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} Q^{\pi_{\theta}}]$$

Non-differentiable energy measures

$$\nabla_{\theta} \mathbb{E}_{\alpha \sim \pi_{\theta}} J(\alpha) = \mathbb{E}_{\alpha \sim \pi_{\theta}} [J(\alpha) \nabla_{\theta} \log \pi_{\theta}]$$
$$\approx \frac{1}{k} \sum_{i=1}^{k} J(\alpha_{i}) \nabla_{\theta} \log \pi_{\theta}(\alpha_{i})$$

Software Environment



Non-Differentiability

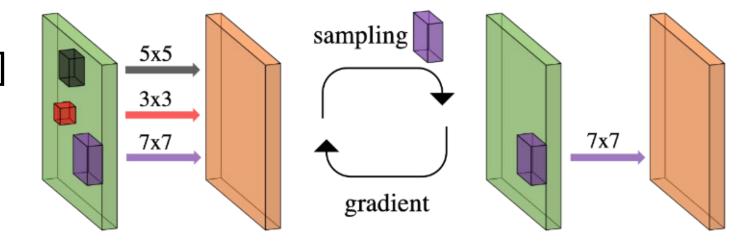
 Relax the discrete mask variable d to be a continuous random variable computed by the Gumbel Softmax function

$$d_i = \frac{\exp((g_i + \log v_i)/\tau)}{\sum \exp((g_i + \log v_i)/\tau)}$$

where v_i is the logit, $g_i \sim \text{Gumbel}(0, 1)$, τ is the temperature.

One-hot [0, 1, 0]

Continuous [.3, .5, .2]



E. Jang, S. Gu, and B. Poole, "Categorical reparameterization with Gumbel-Softmax," ICLR, 2017.

Bilevel Optimization

- Whenever the policy parameter θ changes, the weights of network w(α) needs to be retrained.
- Motivated by differentiable architecture search (DARTS), we propose the following algorithm.

Sample minibatch of network configurations α from the controller

Update network models $w(\alpha)$ by minimizing the training loss

Update the controller parameters θ

H. Liu, K. Simonyan, and Y. Yang, "DARTS: Differentiable architecture search," ICLR 2019.

Contents

Introduction

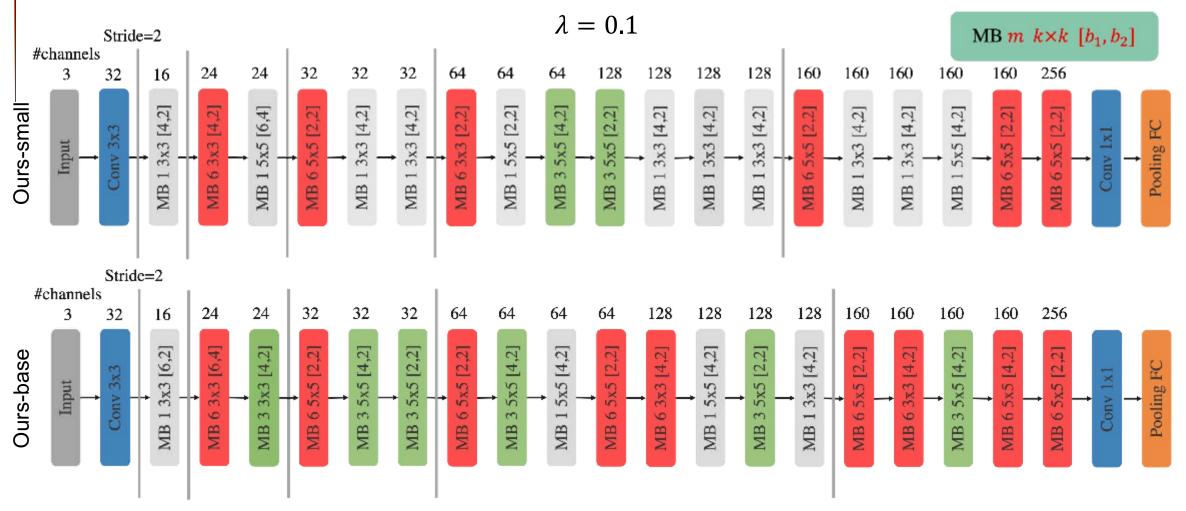
- Our algorithm
- Experimental results
- Conclusion

Experimental Settings

- Hardware simulator of Bit Fusion [1, 2]
- First, search architectures and mixed precision for each layer on a proxy task, tiny ImageNet
 - > Trained for a fixed 60 epochs
 - > 5 days on 1 NVIDIA Tesla P100
- Next, train the discovered architectures on CIFAR-100 and ImageNet from scratch.

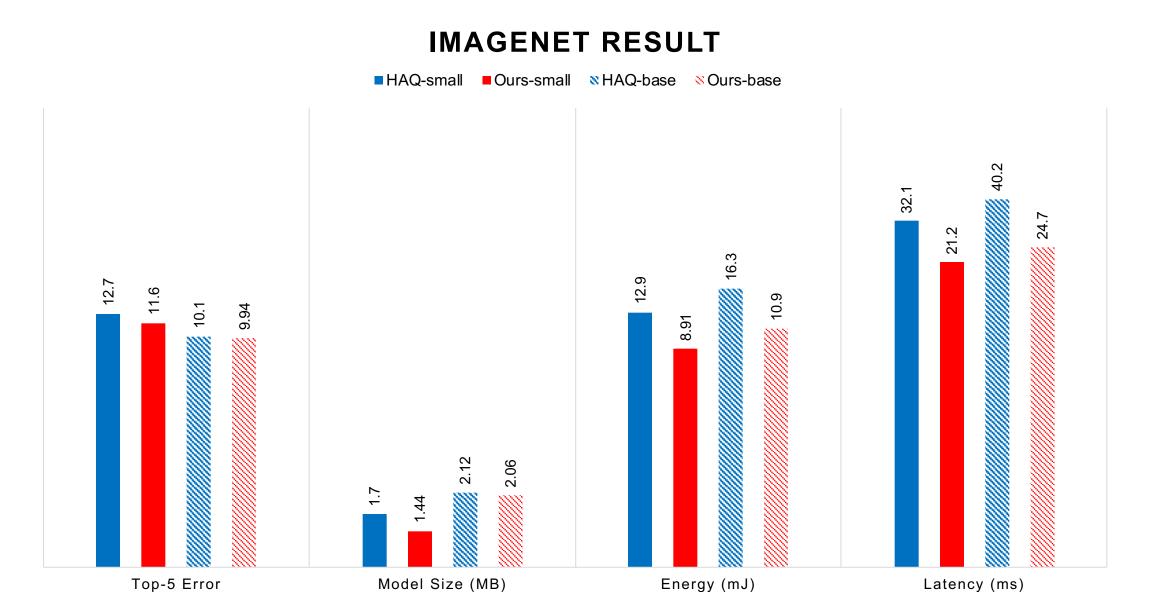
[1] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, "Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural network," in Proc. ISCA, June 2018, pp. 764–775.
[2] <u>https://github.com/hsharma35/bitfusion</u>

Searched Results

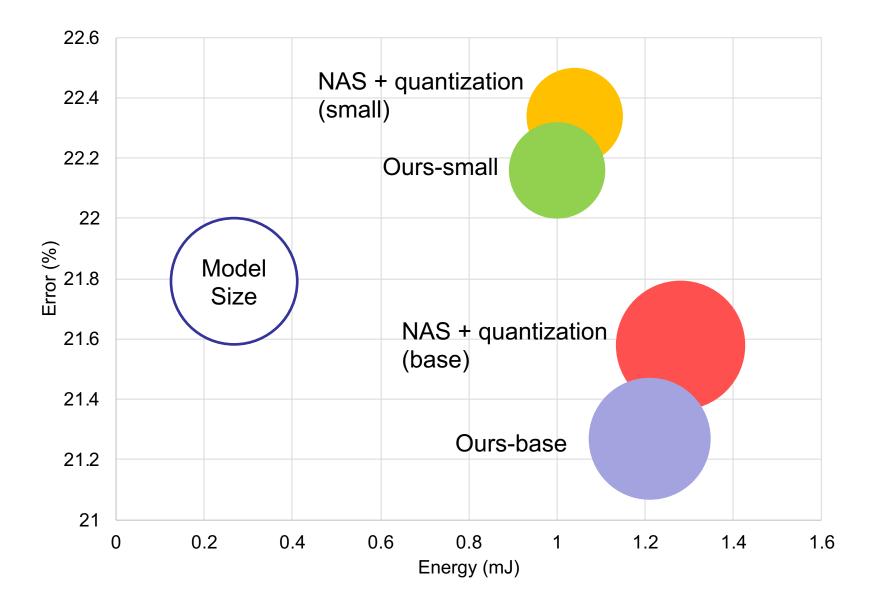


 $\lambda = 0.01$

Results on ImageNet

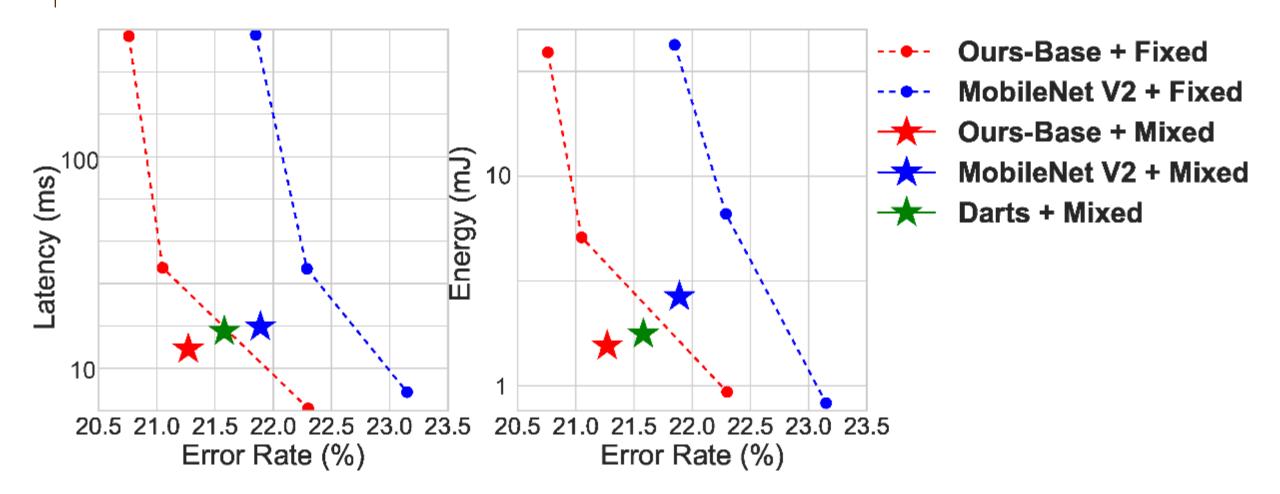


Joint NAS and Mixed Precision Quantization



Adaptive Mixed Precision Quantization

Pareto front for error rate, latency, and energy



Contents

Introduction

- Our algorithm
- Experimental results
- Conclusion

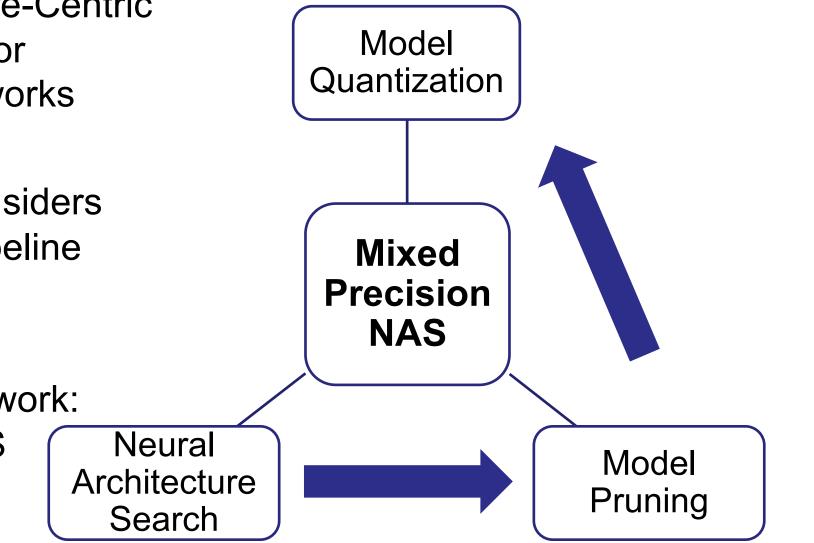
Conclusion

- We propose a new methodology to perform joint optimization of NAS and mixed precision quantization in the extended search space.
- Hardware performance is involved in the objective function.
- Our methodology facilitates the end-to-end design automation flow of neural network design and deployment, especially the edge inference.

Thank you!

Backup Framework

- Pipelines of Hardware-Centric
 Design Automation for
 Efficient Neural Networks
- Limited research considers each stage of the pipeline collaboratively
- Our proposed framework: Mixed Precision NAS



Backup result

