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Abstract—Large scale deep neural networks (DNNs) have achieved re-
markable successes in various artificial intelligence applications. However,
high computational complexity and energy costs of DNNs impede their
deployment on edge devices with a limited energy budget. Two major
approaches have been investigated for learning compact and energy-
efficient DNNs. Neural architecture search (NAS) enables the design
automation of neural network structures to achieve both high accuracy
and energy efficiency. The other one, model quantization, leverages low-
precision representation and arithmetic to trade off efficiency against
accuracy. Although NAS and quantization are both critical components of
the DNN design closure, limited research considered them collaboratively.

In this paper, we propose a new methodology to perform end-to-
end joint optimization over the neural architecture and quantization
space. Our approach searches for the optimal combinations of ar-
chitectures and precisions (bit-widths) to directly optimize both the
prediction accuracy and hardware energy consumption. Our framework
improves and automatizes the flow across neural architecture design
and hardware deployment. Experimental results demonstrate that our
proposed approach achieves better energy efficiency than advanced
quantization approaches and efficiency-aware NAS methods on CIFAR-
100 and ImageNet. We study different search and quantization policies,
and offer insights for both neural architecture and hardware designs.

I. INTRODUCTION

Deep neural networks (DNNs) have revolutionized many areas of
machine intelligence and enabled superhuman accuracy for many
different tasks. While most of the inferences currently reside in the
cloud, it is increasingly desirable to deploy the trained DNNs to edge
devices, such as mobile phones and wearable devices, due to privacy,
security, and latency concerns or limitations in communication band-
width. The increasing gaps between complicated DNNs and hardware
implementations deteriorate the edge inference [1]. Hence, growing
demand in small-size and energy efficient DNNs is motivated to meet
the limited area and energy budget of edge applications.
Model quantization. Research has shown that there are redundancies
in both the number of weights and the number of bit representations
(or precisions) of weights and Arithmetic in DNNs [2]. Neural net-
works can be compressed using weight clustering and quantization to
reduce the computation complexity with negligible loss of accuracy.
In the quantization approach, full precision floating point represen-
tation is replaced by lower fixed point precision or even binary
representation to achieve a significant reduction in computation as
well as energy consumption. Learning layer-wise bitwidths has been
proposed recently [3; 4] to explore the search space of layer-wise
quantization policies.
Neural Architecture Search. Another major approach to learning en-
ergy efficient deep networks is by designing efficiency-friendly neural
architectures [5; 6; 7; 8]. Recently, researches show that automatically
designing neural architectures by efficiency-aware NAS [5; 9; 10]
can bring more benefits than hand-crafted design. Following NAS
framework, compact and efficient architectures are found by either
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searching from scratch [5; 9], or pruning or distilling from well
trained large neural networks [2; 11; 12].

However, the existing works are focusing on either of the two
methods aforementioned while neglecting the potential of their in-
teraction and joint optimization for further improvement. Intuitively,
the optimal choices of bit-widths and architectures are correlated.
For instance, in MobileNets [13], one should retain more bits for
the bottleneck layers (the expansion and projection layer) which
encode the model’s intermediate inputs and outputs using small 1×1
convolutional filters; on the other hand, one may consider using fewer
bits in the depthwise convolution layers because empirically, they
are often over-parameterized, memory bounded and are less sensitive
than bottleneck layers. The combination of NAS and quantization
contributes to the final accuracy and energy efficiency of neural
architectures in a complex and interleaved manner. Therefore, a
synergistic co-optimization of NAS and quantization is likely to allow
us to learn more hardware efficient networks.

In this paper, we propose to learn more hardware-efficient deep
networks by co-optimizing both precision and NAS. Compared with
the hand-crafted heuristic design which often falls in sub-optimal
results, our method can achieve better solutions. Our algorithm lever-
ages a differentiable neural architecture search method with Gumbel-
Softmax to directly search the optimal combinations of precision and
architectures, to minimize both the accuracy and the energy cost,
estimated from a physical simulator. We conduct extensive studies
on two widely-adopted image classification benchmarks, CIFAR-
100 [14] and ImageNet2012 [15], on which significant improvements
are obtained. The contributions of this paper are highlighted as below.

• Our approach yields more energy efficient deep learning by
co-optimizing the neural network architectures and quantization
policies that assign different precision to different blocks of the
network. To our best knowledge, this paper is the first work
to explore the end-to-end co-optimization of NAS and mixed
precision quantization.

• We develop a framework to effectively search the new solution
space. We train a quantized DNN during the search, and adopt
the REINFORCE algorithm for the non-differentiable energy
oracle from hardware simulators.

• Our experimental results show that the co-optimized architec-
tures and the bitwidths settings can achieve lower error rate
and less energy consumption on CIFAR-100 and ImageNet2012
tasks than strong baseline approaches. Specifically, in Ima-
geNet2012, we can reduce 63% energy with almost no loss of
top-1 accuracy, compared with 8-bit MobileNetV2.

The rest of the paper is organized as follows. Section II introduces
the related research in this area; Section III explains the detailed
algorithms and discusses the proposed NAS methodology; Section IV
demonstrates the results; Section V concludes the paper.



II. RELATED WORK

In this section, we first introduce a general topic, hardware-aware
machine learning. Then we discuss two related topics: searching
hardware-friendly neural network architectures and quantization.

A. Hardware-aware Machine Learning

With the huge success of deep learning, there is an increasing
demand for pushing it to the edge. However, DNNs are quickly
evolving towards deeper and more complicated architectures for
higher accuracy [1]. Hence, it is energy hungry and less run-time
efficient on the edge inference, raising the necessity of hardware-
aware machine learning design.

Besides the hardware-aware compression and quantization, re-
searchers also pay attention to the design of efficient neural architec-
tures for hardware-aware machine learning [16].

Some efficient neural architectures have been designed hand-
crafted, e.g. MobileNet [13], ShuffleNet [17]. Others are developed
automatically by neural architecture search methods [5; 9].

B. Neural Architecture Search (NAS)

NAS has demonstrated superior performance on many challenging
applications, such as image classification [7], object detection [9],
natural language processing [6], to name a few. Most pioneer works
in NAS [6; 7; 8; 18; 19] focused on searching novel architectures such
that the task-oriented performance (usually accuracy) is optimized
without taking hardware performance into consideration. Some of the
previous works [10; 19; 20] try to find efficient network architectures,
but mainly focus on the latency on GPU and CPU.

Some NAS related works have also been done on searching
efficient neural networks for edge devices. FBNet [9] focuses
on NAS with less latency on mobile devices, which relaxes the
non-differentiable discrete space to differentiable continuous space
using Gumbel-Softmax [21]. ProxylessNAS [5] also focuses on
NAS for given mobile devices, where the binarized parameters are
trained based on BinaryConnect [22]. Both works use MobileNetV2
block [13] as the base search unit, which is proved energy efficient
and low-latency on edge devices.

Weight pruning can be viewed as a type of NAS, which discovers
a small neural network from an over-parameterized neural net-
work [23]. Weight pruning leverages the inherent redundancy in the
number of weights, thereby achieving effective model compression
with negligible accuracy loss. However, its irregular sparsity and
complicated indexing scheme may induce overhead in hardware
implementation and require careful optimization[2; 11; 12]. In this
work, we focus on other schemes that are more friendly to hardware
implementation, but our methodology can be extended to include
pruning as well.

C. Quantization

Model quantization methods remove the redundancies in the neural
networks and bit representations, and they are able to reduce the
computational complexity significantly. The quantized models offer
the potential of remarkable memory and computation efficiency, while
achieving the accuracy of their full-precision counterparts [24; 25].
Moreover, weight quantization, especially equal-distance quantiza-
tion, is more hardware friendly than weight pruning methods.

The critical point for quantization is to keep the balance of task-
specific performance and hardware-related metrics.

Some work tries to train a binary neural network, which can
extremely save energy, latency, and other hardware-related metrics
at the cost of severe degradation on accuracy. BinaryConnect and

XNOR Net binarize all the weights and activations [22; 26]. How-
ever, it causes an extreme loss on accuracy. For instance, applying
XNOR Net on AlexNet [27] achieves 44.27% top-1 accuracy on
ImageNet2012, which is far worse than the full-precision accuracy
56.6%. Other works focus on training low-precision neural networks,
which can keep the balance between efficiency and accuracy better
than binary neural networks. Deep Compression quantizes the net-
work weights to reduce the model size by rule-based strategies [24].
Jacob et al. and Banner et al. train neural networks with 8-bit
precision [28; 29], with straight through estimator and range batch
normalization.

However, once the neural network becomes deeper, the search
space of layer-wise bitwidth increases exponentially, which makes
it infeasible to rely on hand-crafted strategies. The heuristic layer-
wise bitwidths are believed to be sub-optimal [3], and cannot keep
the balance between accuracy and efficiency. Recent works try to
search layer-wise bitwidths for a pre-trained model with a particular
architecture. HAQ [3] searches layer-wise bitwidths for MobileNet
using DDPG [30], and adds a fine-tune process with few iterations
after quantization. Guo et al. develops a evolutionary algorithm to
search layer-wise bitwidths [10]. Mixed Precision Quantization [4]
and Stochastic Layer-Wise Precision [31] search with Gumbel-
Softmax [21] are not tested on some efficient neural architectures,
e.g. MobileNet [13], ShuffleNet [17]. Applied on a pre-trained model,
all these works can achieve better accuracy than one single bit-width
and heuristic layer-wise bitwidths. These empirical results show that
automatically searching the layer-wise bitwidth is helpful for deep
neural network quantization.

III. ALGORITHM

In this section, we introduce the general form of our algorithm and
present our joint NAS and mixed precision quantization framework.

A. Energy Constrained NAS

Figure 1 shows the overall flow of our model. We aim at searching
novel energy efficient neural architectures. Our method can be viewed
as a controller that interacts with a task environment (e.g. image
classification task) and a hardware environment (e.g. physical energy
simulator). The goal of the controller is to discover novel neural
architectures that minimize the task-related loss while satisfying some
energy constraints. To be concrete, our training objective can be
written as follows,

min
θ

Eα∼πθ

[
L(fw∗(α); Dval)

]
, (1)

s.t. w∗ = argmin
w
L(fw(α); Dtrn, α),

Eα∼πθJ(α) < c.

The NAS controller πθ generates samples {α} that are different
configurations of neural networks. Given a network configuration α,
fw(α) defines a deep neural network model associated with model
weights w(α). In the case of image classification, network fw could
be the AlexNet [27] that maps an image to a probability distribution
over predicted output classes. L(·) stands for the task-dependent loss
(e.g., cross entropy for image classification) and J(α) measures the
energy cost of the network initialized by a configuration α. The
controller is trained to find the best internal parameters θ so that it
will generate architectures that achieve the minimum expected task-
specific loss L(fw∗(α);Dval) evaluated on a validation set Dval,
where the network weights w∗(α) are obtained by minimizing the
loss function on a training set Dtrn. Meanwhile, the expected energy



consumption is constrained to be smaller than a threshold c to
promote energy efficient architecture search.

We first relax the energy constrained objective (1) as follows,

min
θ

Eα∼πθ
[
L(fw∗(α); Dval)

]
+ λ

[
Eα∼πθ [J(α)]− c

]
+

(2)

s.t. w∗ = argmin
w
L(fw(α); Dtrn, α), (3)

with [x]+ = max(x, 0) and λ a hyper-parameter, which only penal-
izes the objective function when the energy constraint is violated.

However, it is still infeasible to solve the optimization problem (2)
correctly. The computational difficulties arise in two-fold. First, the
optimal model weights w∗(α) depend on model configuration α, an
inner loop minimization is required whenever the control parameter θ
is changed. Second, in general, energy-based objectives J(α) are non-
differentiable, which prohibits the use of efficient back-propagation.

To solve the aforementioned challenges, motivated by DARTS [32],
we approximate w∗(α) with one step gradient descent, specifically,

w′(α) = w(α)− ε∇wL(fw(α);Dtrn, α), (4)

with ε as the step size. Without considering the energy related terms,
our objective function is reduced to

min
θ

Eα∼πθ

[
L(fw′(α); Dval)

]
.

We then apply gradient descent for optimization, such that the model
parameters θ are updated as follows:

θ ← θ − β∇θEα∼πθ
[
L(fw′(α); Dval)

]
(5)

where β is the step size. In practice, the expected gradient is
approximated using Monte Carlo samples {αi}mi=1 drawn from πθ ,
combining with Equation (4), we can approximate Equation (5) as
follows,

θ ← θ − β∇θ
[
1

m

m∑
i=1

L(fw−ε∇wL(fw(αi);Dtrn);D
val)

]
. (6)

To deal with the non-differentiable energy measures, we use the
REINFORCE algorithm [33]. The expected gradient can be computed
as follows

∇θEα∼πθJ(α) = ∇θ
∫
J(α)πθ(α)dα

=

∫
J(α)∇θπθ(α)dα =

∫
J(α)πθ(α)∇θ log πθdα

= Eα∼πθ

[
J(α)∇θ log πθ

]
≈ 1

k

k∑
i=1

J(αi)∇θ log πθ(αi). (7)

The full algorithm is outlined in Algorithm 1.

B. Mixed Precision Architecture Search Space

In order to search an energy efficient neural architecture and have a
fair comparison with previous NAS algorithms [9; 10], we adopt the
commonly used MobileNetV2 (MB) block [13] as the base search
unit, which is demonstrated in Figure 2. Each MB block consists
of two bottleneck layers (expansion and projection layer) and one
depthwise convolution layer. First, the 1 × 1 expansion convolution
layer expands the number of channels by a factor of m before the
data goes into the depthwise convolution. Second, the depthwise
convolution applies k×k filters to its input while keeping the number
of output channels the same. Finally, a 1× 1 projection convolution
layer squeezes the network in order to match the initial number of
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Fig. 1. Illustration of our energy aware neural architecture search framework.

channels. We allow each MB block with a filter size k ∈ {3, 5, 7}
and an expansion ratio m ∈ {1, 3, 6}.

We assume the final neural network architecture is hierarchical
that stacks of a certain number of MB blocks. In order to search the
number of MB blocks, we add a zero operation (skip connection,
marked as s in Figure 2.) into the search space. The entire MB block
will be skipped if the skip operation is selected (s: true).

In addition, we augment our NAS search space to allow each MB
block to choose the quantization precision adaptively. Note that in a
MB block the depthwise convolution layer normally contains more
parameters than the bottleneck layers, and thus more energy hungry.
We propose to assign two different bitwidths for each MB block, and
search the optimal precision choices for the bottleneck layers (b1) and
the depthwise layer (b2), respectively. And b1, b2 ∈ {2, 4, 6, 8} bits.
Table I shows the macro-architecture of our search space.

Input Shape Block and Bit-width #channels stride n
224× 224× 3 Conv3× 3, 8bit 32 2 1
112× 112× 32

MB(s,m, k, b1, b2)

16 2 1
56× 56× 16 24 1 2
56× 56× 24 32 2 4
28× 28× 32 64 2 4
14× 14× 64 128 1 4
14× 14× 128 160 2 5
7× 7× 160 256 1 2
7× 7× 256 Conv1× 1, 8bit 1280 1 1
7× 7× 1280 Pooling & FC, 8bit - 1 1

TABLE I
THIS TABLE SHOWS THE MACRO-ARCHITECTURE OF THE SEARCH SPACE.

AND n DENOTES THE NUMBER OF REPEATED MB LAYERS WITH THE SAME
NUMBER OF CHANNELS. (s,m, k, b1, b2) STANDS FOR MB BLOCK

CONFIGURATIONS.

C. Search Algorithm

We are now ready to show the representation of the network config-
uration α. Let η` = [s`,m`, k`, b`1, b

`
2] be the discrete variables that

associated with the MB block in the `-th layer. A network configura-
tion α is a stack of N MB blocks as a vector of [η1, ..., ηN ] ∈ R5N ,
where N denotes the number of MB blocks. Each element in α can be
considered as a specific operation. Without loss of generality, denote
o(x) as one of the operator defined in α, which takes K possible
values. E.g., o(x) could be a depthwise convolution layer, in this
case, all possible filter size choices are {3 × 3, 5 × 5, 7 × 7} and
K = 3. Given the input x, o(x) maps x to its corresponding output.

To learn the controller, it remains to show the representation of πθ
and the gradient of the validation loss ∇θEα∼πθ [L(fw′(α),D

val)]



Algorithm 1 Energy aware neural architecture search
1: repeat
2: Sample minibatch of network configurations {αi}ki=1 from the controller πθ
3: Update network models {w(αi)} by minimizing the training loss following Eqn. 4.
4: Update the controller parameters θ following Eqn. (6) and (7).
5: until Converge

Fig. 2. An illustration of the structure of a MB search unit. m denotes the expand ratio, k denotes the kernel size, s denotes whether skipping this block,
and b1, b2 denotes the layer-wise bitwidths.

w.r.t. θ defined in Eqn. 6. For each operator o(x), we represent
discrete valued architecture choices as a one-hot vector d ∈ RK , such
that dj ∈ {0, 1} and

∑K
j=1 dj = 1. In this way, the corresponding

output of applying operator o with representation d is
∑K
j=1 djoj(x),

where oj(x) denotes the forward operation with j-th candidate in the
search space (e.g., o1 could be 3 × 3 depthwise convolution). We
parametrize p(dj = 1) = exp(φj)/

∑K
i=1 exp(φi), where {φj} are

trainable parameters that belongs to the controller parameters θ. It
is problematic to calculate the gradients directly due to the inability
to back-propagate through categorical samples. We thus replace the
non-differentiable network configuration samples with continuous
differentiable samples from a Gumbel-Softmax distribution [21]. That
is, we replace one-hot representation d as a continuous vector such
that dj ≥ 0,

∑K
j=1 dj = 1, which can be trained using standard back-

propagation. For the rest, we follow the settings for Gumbel-softmax
sampling used in FBNet [9].

Training with Quantized Weights. In our approach, only the
quantized values of the weights and activations are used in all forward
operations. In order to learn quantized weights, we follow the linear
quantization schemes suggested by [2; 3]. Specifically, for a layer
with n×d dimensional input xxx = (x1, ..., xn), xi ∈ Rd, we quantize
each xi linearly into b bits:

Quantize(xi, b) = round(clamp(xi, c)/s)× s,

where clamp truncates all values into the range of [−c, c], with c =
max{|xi|}. And the scaling factor s is defined as s = c/(2b−1− 1).

IV. EXPERIMENTAL RESULTS

We search architectures and mixed quantization precision for each
layer on a proxy task, tiny ImageNet 1. Next, we train the discovered
architectures on two image classification benchmarks (CIFAR-100
and ImageNet) from scratch. We show that our method achieves
competitive (or better) accuracy compared with state-of-the-art deep
neural architectures and simultaneously yields significant smaller
model size and lower energy consumption.

Low precision neural network baselines are quantized and then
finetuned using the standard compression methods proposed in [24]
unless otherwise specified.

1https://tiny-imagenet.herokuapp.com/

A. NAS

Energy Modeling. We use the simulator for Bit Fusion 2 [34] to
obtain the hardware-related performance metrics. Bit Fusion employs
a 2D systolic array of bit-level processing elements that dynamically
fuse to match the bitwidth of every single layer. For a fair comparison,
we exactly follow the setting described in HAQ [3] for energy
estimation. All the energy consumption discussed below are for the
inference with a batch of 16 images.

Settings. The tiny ImageNet dataset consists of 200 classes. Each
class contains 500 training images, 50 validation images, and 50
test images, respectively. For preprocessing, we resize the image to
the size of 224 × 224. We use a batch size of 64 and adopt label
smoothing for training. Our algorithm is trained for a fixed 60 epochs
during the architecture search process. We run our search program
on one NVIDIA Tesla P100 GPU, which takes five days.

Results. Note that we jointly optimize the task-oriented loss
and energy constrains, the trade-off between these two terms are
controlled by a hyperparameter λ (defined in Equation 2). Large λ
values lead to smaller energy efficient models while less accurate
on the prediction task; vice versa. We evaluate two different settings
λ = 0.1, 0.01, which result in one smaller and one bigger neural
architecture (see Figure 3), respectively. We can see from Figure 3
that depthwise convolution layers (more parameters) are allocated
with fewer bitwidths than bottleneck convolution layers (fewer pa-
rameters), as also observed in HAQ [3]. In addition, we notice that
bottleneck layers with small expand ratios (fewer parameters) tend
to have larger bitwidths to preserve good accuracy.

B. Experiments on ImageNet

Dataset. The ILSVRC 2012 classification dataset [27] consists of
1.2 million training images, and 50,000 validation images, with 1,000
classes. We resize the image size to 224×224, and adopt the standard
data augment scheme (mirroring and shifting) for training images.

Settings. For ImageNet, we set the batch size to be 64, and
fix the number of the filters in the first convolution layer to be
32. We use stochastic gradient descent with an initial learning rate
10−4 and apply cosine learning rate annealing scheduling [39]. We
also use label smoothing [40] (α = 0.1 ), mixup [37] (α = 0.2

2https://github.com/hsharma35/bitfusion
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Fig. 3. Two energy efficient deep neural architectures found by our method. “MB m k × k [b1, b2] ” represents a mobile inverted bottleneck convolution
layer, for which m stands for the expansion ratio, k× k is the filter size for the the depthwise convolution layer, b1 and b2 represents the bit-width precision
for the bottleneck layers (expansion and projection convolution layers) and the depthwise layer, respectively.

Model Precision Top-1 Error (%) Top-5 Error (%) Model Size (Bytes) Energy (mJ) Latency (ms)
VGG-16 [35] 8-bit 29.10 7.40 138.00M 753.11 838.03
ResNet-50 [36] 8-bit 24.70 5.30 25.50M 557.46 591.17
MobileNetV2 [3] 8-bit 28.19 9.75 3.40M 29.01 73.85
FBNet-B [9] 8-bit 26.84 8.97 4.50M 34.65 83.91
FBNet-B [9] 3-bit 36.29 15.38 1.68M 13.47 27.93
HAQ-small [3] mixed 33.01 12.67 1.70M 12.85 32.10
ours-small mixed 31.62 11.56 1.44M 8.91 21.19
HAQ-base [3] mixed 29.10 10.09 2.12M 16.31 40.21
Ours-base mixed 28.23 9.94 2.06M 10.85 24.71

TABLE II
RESULTS ON THE IMAGENET2012 DATASET.

Model Precision Model Size (Bytes) Error (%) Energy (mJ) Latency (ms)
DenseNet-BC-190 + Mixup [37] 8-bit 26.0M 17.02 125.74 247.21
ENAS + Cutout [38] 8-bit 4.6M 16.58 25.93 49.78
NAO + Cutout [18] 8-bit 10.8M 15.87 37.20 75.92
MobileNetV2 8-bit 2.5M 21.85 5.09 13.13
FBNet-B [9] 8-bit 2.8M 21.36 8.27 17.48
HAQ-small [3] mixed 0.6M 22.93 1.17 2.75
ours-small mixed 0.6M 22.16 1.00 2.53
HAQ-base [3] mixed 0.8M 21.89 1.53 3.31
ours-base mixed 0.8M 21.27 1.21 2.98

TABLE III
RESULTS ON THE CIFAR-100 DATASET.

) for data augmentation, and clip the gradient to the range of
[−5, 5]. We replace the vanilla batch normalization layer with 8-bit
range normalization following [29], and train our discovered neural
architectures for 120 epochs on the training set.

Results. The performance of our models (denoted as ours-small
and ours-base) is reported in Table II along with other state-of-the-art
approaches. We report the top-1 and top-5 classification error on the
validation set. In addition to the energy consumption, we also show
the latency and model size off all evaluated approaches. As shown
in Table II, our discovered models can extremely reduce the energy
while achieving on par (better) accuracy compared to strong baseline
approaches.

In the first block, we can see that classic DNNs are most energy
hungry. For example, VGG-16 [35] costs 753.11mJ energy along

with 838.03ms latency, ResNet-50 [36] costs 557.46mJ energy along
with 591.17ms latency. The energy consumption of these two models
is about 50× higher than our models. To have a fair comparison
with HAQ [3] with similar level of energy consumption, we com-
pare with two variants of HAQ, HAQ-small and HAQ-base: HAQ-
small denotes the energy-conserving setting with more aggressive
quantization strategies; HAQ-base denotes the setting favors better
accuracy and thus larger models. Compared to HAQ-small, ours-
small reduces the top-1 error rate from 33.01% to 31.62% and
reduces energy by 3.94mJ. Ours-base also achieves lower top-1 error
rate (30.60% → 28.23%) and leads to about 3× lower energy
consumption (30.60mJ→ 10.85mJ) than HAQ-Base.

Compared to 8-bit MobileNetV2, ours-base achieves 35% re-
duction on model size and 63% reduction on energy, respectively.



Compared with 3-bit FBNet-B [9], which has similar energy cost
to ours-base, we can improve the top-1 error rate from 36.29% to
28.23%. Besides, our discovered models can be fitted into on-chip
SRAM cache (5pJ per access under 45nm CMOS technology) rather
than off-chip DRAM memory (640pJ per access under 45nm CMOS
technology). Shown in Table II, the model size of ours-small is
1.44MB, which could be accommodated into on-chip SRAM cache.

C. Experiments on CIFAR-100

Dataset. CIFAR-100 3 consists of images drawn from 100 classes.
The training and test sets contain 50,000 and 10,000 images respec-
tively. We adopt a standard data argumentation scheme (mirroring
and shifting) that is widely used for this dataset.

Settings. We set the batch size to be 128, set the learning rate to be
0.1, remove label smoothing and remove the first two down-sample
convolutions in the architecture. We follow the other settings in the
ImageNet task.

Results. The main results on CIFAR-100 are shown in table III, we
can see that pioneer state-of-the-art architectures, e.g. 8-bit DenseNet
[41], lead to significant energy and memory cost, which is 125.74mJ
and 26.0MB respectively. Recent NAS frameworks only focus on
accuracy optimization that also results in architectures with notable
energy consumption. For instance, 8-bit NAO [18] uses 37.20mJ; 8-
bit ENAS [38] costs 25.93mJ. On the other hand, ours-small achieves
×5 reduction in model size and more than ×5 reduction in energy
consumption while achieving better accuracy compared to the 8-
bit MobileNetV2. Compared to HAQ, ours-small costs less energy
than HAQ-small, meanwhile, improves the error rate from 22.93% to
22.16%. Ours-base can achieve 0.32mJ energy reduction than HAQ-
base, and improve the error rate from 21.89% to 21.27%.

Optimization Model Size (Bytes) Error(%) Energy (mJ)
NAS+Quantization (Small) 0.5M 22.34 1.04
ours-small 0.5M 22.16 1.00
NAS+Quantization (Base) 0.9M 21.58 1.28
Ours-base 0.8M 21.27 1.21

TABLE IV
COMPARISON OF STEPWISE NAS AND MODEL QUANTIZATION V.S. OUR

JOINT-OPTIMIZING FRAMEWORK. THE MODELS ARE EVALUATED ON THE
CIFAR-100 DATASET.
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Fig. 4. Comparison of mixed precision quantization (denoted as ‘mixed’) v.s.
constant precision quantization (denoted as ‘fixed’). The dashed line shows
the results for {8, 4, 2} bitwidths (left to right), respectively.

D. Joint NAS and Adaptive Mixed Precision Quantization

We further study the importance of joint NAS and mixed preci-
sion quantization. On the CIFAR-100 dataset, we study a baseline
approach by performing NAS and model quantization stepwisely.

3https://www.cs.toronto.edu/∼kriz/cifar.html

Specifically, we use DARTS [32] 4 for architecture search with the
same search space defined in Table I while using 8-bits precision for
all layers. Next, we perform layer-wise model quantization following
HAQ. In a way similar to our approach, we set λ = 0.1, 0.01, respec-
tively, and discover two neural models (NAS+Quantization (small)
and NAS+Quantization (base)) with similar model size compared to
ours-small and ours-base.

As we can see from Table IV, compared to NAS+Quantization
(small), ours-small reduces the error rate from 22.34% to 22.16%
and also reduce the energy cost by around 0.05mJ. Compared to
NAS+Qunatization (base), Ours-base reduces the error rate from
21.58% to 21.27% and achieves a 5% reduction on energy consump-
tion. These results highlights the benefits of joint NAS and mixed
precision quantization as suggested by our approach.

In Figure 4, we show the advantage of adaptive mixed precision
quantization versus constant precision quantization. In Figure 4,
the dashed line shows the performance (latency v.s. classification
error rate) of different baseline architectures with a constant 8-bit,
4-bit, and 2-bit precision, respectively. The star points show the
results of HAQ and our method, that both allow flexible layer-wise
bitwidths. With mixed layer-wise precision searching, both HAQ
and our method discovers neural architectures yields good trade-off
between accuracy and latency, and our method outperforms HAQ.

V. CONCLUSION

In this work, we propose a new methodology to perform NAS
and mixed precision quantization in the extended search space with
hardware performance involved in the objective function. Experimen-
tal results demonstrate that our proposed approach achieves better
energy efficiency than advanced quantization approaches on CIFAR-
100 and ImageNet. Our methodology facilitates the end-to-end design
automation flow of neural network design and deployment, especially
the edge inference.
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