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Outline

• Introduction
• A New Framework for Layout Decomposition

• ILP à LP relaxation with iterative rounding

• Experimental Results
• Conclusion
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Triple Patterning Lithography (TPL)

• An example of TPL conflict graph and 
decomposition

• Layout decomposition is a fundamental problem 
for multiple patterning
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Quadruple Patterning Lithography (QPL)

• An example of QPL layout decomposition 
(coloring) and conflict graph
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Stitch Insertion 

• Stitch may be inserted to resolve conflict

• However, strongly discouraged due to 
misalignment and yield loss

• In this work, we do not allow stitch insertion
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Current State of MPL Decomposition
• ILP or SAT: [Cork+, SPIE’08], [Yu+, ICCAD’11], [Cork+, SPIE’13]
• Greedy or heuristic: [Ghaida+, SPIE’11], [Fang+, DAC’12], 

[Kuang+, DAC’13], [Fang+, SPIE’14]
• SDP or graph search: [Yu+, ICCAD’11], [Chen+, ISQED’13], 

[Yu+, ICCAD’13], [Yu+, DAC’14]

6CPU runtime

Conflict #

ILP: Good performance 
but expensive

Greedy or heuristic: 
Fast but bad quality

SDP or graph search:  Tradeoff

[Yu+, SPIE’14]
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Major Contributions of This Work

• A new layout decomposition framework for TPL/QPL
• ILP à novel linear programming (LP) based algorithm 

with iterative rounding scheme 

• An odd-cycle based technique to enhance LP solution 
quality (which can be better mapped to ILP solution)

• Our experiments obtain comparable quality cf. 
previous state-of-the-art, but are 26x to 600x faster 
than ILP, and 1.8x to 2.6x faster than SDP
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Problem Formulation

l Input
• Uncolored layout patterns
• Minimum coloring distance !"
• Number of colors available (TPL or QPL)

l Output
• Decomposed layout with color assignment for each pattern 
• TPL/QPL friendliness
• Stitch insertion is not allowed
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Initial ILP Formulation

• Represent color with two binary variables
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i j

(xi1, xi2) (xj1, xj2)

xi1, xi2, xj1, xj2 2 {0, 1}

(xi1, xi2) ! color

(0, 0) ! 0

(0, 1) ! 1

(1, 0) ! 2

(1, 1) ! 3

xi1 + xi2  1

Additional constraint for TPL
xi1 + xi2 + xj1 + xj2 � 1

(0, 0)       (0, 0) 

xi1 + (1� xi2) + xj1 + (1� xj2) � 1

(0, 1)       (0, 1) 

…
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ILP Formulation

• The goal is to meet all the constraints
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min Objective (1a)

s.t. xi1 + xi2  1, (1b)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V, (1h)

xi1, xi2 2 {0, 1}, 8i 2 V. (1i)

Only for TPL
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LP Relaxation

• Relax integer to continuous variables
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min Objective (1a)

s.t. xi1 + xi2  1, (1b)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V, (1h)

xi1, xi2 2 {0, 1}, 8i 2 V. (1i)

0  xi1, xi2  1, 8i 2 V
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LPIR

• Linear programming and iterative rounding (LPIR)
• Non-integer solutions

• Fewer non-integers mean closer to optimal solutions of ILP
• Prune non-integer solutions in the feasible set
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(0.5,0.5)

Reduce 
non-integers
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Simple Observation

• Suppose !"# = !%# = 0
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i j

(xi1, xi2) (xj1, xj2)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V (1h)

xi2 + xj2 = 1

The second bits must be different
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Non-integers along Odd Cycles

• Consider the constraints along an odd cycle
• Suppose !"# = !%# = !&# = !'# = !(# = 0
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LPIR – Add Odd Cycle Constraints

• Additional constraints
• Prune non-integer solutions from feasible set
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s.t.

xi1 + xj1 + xk1 + xl1 + xm1 � 1,

(1� xi1) + (1� xj1) + (1� xk1) + (1� xl1) + (1� xm1) � 1

Help resolve potential non-integers in the second bits
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LPIR – Objective Function Biasing

• Push non-integer solutions to integers by 
dynamically adapting the objective function

• If !" = 0.6, it means !" tends to be 1
• If !" = 0.4, it means !" tends to be 0
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Cannot handle (0.5, 0.5)

If xi > 0.5, obj obj + (1� xi).
If xi < 0.5, obj obj + xi.
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LPIR – Binding Constraints Analysis

• Try to handle !"#, !"% = (0.5, 0.5)
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 SicSic  Si1Si1  Si2Si2 

 Constraint set for xi1xi1 

 Constraint set for xi2xi2 

 ii 

 xi1 = 0.5xi1 = 0.5 
 xi2 = 0.5xi2 = 0.5 

 . . . + xi1 + . . .  c1. . . + xi1 + . . .  c1  
 . . . + xi1 + . . .  c2. . . + xi1 + . . .  c2  
 . . . + xi1 + . . .  c3. . . + xi1 + . . .  c3  
 . . . + xi1 + . . .  c4. . . + xi1 + . . .  c4  

 Si1Si1 

 . . . + xi2 + . . . � c5. . . + xi2 + . . . � c5  
 . . . + xi2 + . . . � c6. . . + xi2 + . . . � c6  
 . . . + xi2 + . . . � c7. . . + xi2 + . . . � c7  
 . . . + xi2 + . . . � c8. . . + xi2 + . . . � c8  

 Si2Si2 

 . . . + xi1 + xi2 + . . .  c9. . . + xi1 + xi2 + . . .  c9 
 . . . + xi1 � xi2 + . . . � c10. . . + xi1 � xi2 + . . . � c10 
 . . . + xi1 + xi2 + . . . � c11. . . + xi1 + xi2 + . . . � c11 

 SicSic 

Try pushing !"# to 0 Try pushing !"% to 1 Check !"#, !"% = (0, 1)
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Graph Simplification – Iterative Vertex 
Removal
• Iterative vertex removal 
• Density aware recovery 
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Graph Simplification: Bi-connected 
Component Extraction
• Color recovery

• Color rotation on each component
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Final Coloring Results

Graph Simplification
Generate Simplified Components

Kernel Coloring - LPIR

Vertex Color Recovery

Construct Conflict Graph

Input Layout

Overall Flow

20

Binding Constraint Analysis

LP Relaxation

Add additional constraints
 and objective biasing

Solving LP

Non-integer 
reduced?

N

Y

Simplified 
Component

Colored 
Component

ILP with objective = 0

Detect non-integer bits
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Experimental Environment Setup

• Implemented in C++
• 8-Core 3.4GHz Linux server
• 32GB RAM
• ISCAS benchmark from [Yu+, TCAD’15]
• LP solver Gurobi was used
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Experimental Results on TPL
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TPL conflict# TPL runtime

Baseline 1: ILP [Yu+, TCAD’15]
Baseline 2: SDP [Yu+, TCAD’15]
LPIR achieves almost the same conflict numbers as ILP and SDP, 
but 26x faster than ILP and 1.8x faster than SDP
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Experimental Results on QPL
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QPL conflict# QPL runtime

Baseline 1: ILP [Yu+, DAC’14]
Baseline 2: SDP [Yu+, DAC’14]
LPIR achieves less than 2% degradation in conflict numbers than SDP, 
but 600x faster than ILP and 2.6x faster than SDP

ILP failed to finish
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Conclusion

• This paper proposes a new layout decomposition 
framework for TPL/QPL
• Novel linear programming (LP) based algorithm with 

iterative rounding
• Odd-cycle based pruning technique to enhance LP quality 
• Very good results cf. previous state-of-the-art decomposer

• Future work
• Lithography impacts (e.g., hotspots) from different 

decomposition solutions
• Decomposition friendliness from early design stages like 

placement and routing
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Thanks!
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