
The picture can't be displayed.

11

Yibo Lin1, Xiaoqing Xu1, Bei Yu2, Ross Baldick1,
David Z. Pan1

1ECE Department, University of Texas at Austin
2CSE Department, Chinese University of Hong Kong

Triple/Quadruple Patterning
Layout Decomposition via
Novel Linear Programming

and Iterative Rounding

This work is supported in part by NSF and SRC

The picture
can't be
displayed.

Outline

• Introduction
• A New Framework for Layout Decomposition

• ILP à LP relaxation with iterative rounding

• Experimental Results
• Conclusion

2

The picture
can't be
displayed.

Triple Patterning Lithography (TPL)

• An example of TPL conflict graph and
decomposition

• Layout decomposition is a fundamental problem
for multiple patterning

3

b

a c

d

e

1st mask
2nd mask
3rd mask

The picture
can't be
displayed.

Quadruple Patterning Lithography (QPL)

• An example of QPL layout decomposition
(coloring) and conflict graph

4

b

a c

d

e

1st mask
2nd mask
3rd mask
4th mask

The picture
can't be
displayed.

Stitch Insertion

• Stitch may be inserted to resolve conflict

• However, strongly discouraged due to
misalignment and yield loss

• In this work, we do not allow stitch insertion

5

b

a1

c

d

e

a2

The picture
can't be
displayed.

Current State of MPL Decomposition
• ILP or SAT: [Cork+, SPIE’08], [Yu+, ICCAD’11], [Cork+, SPIE’13]
• Greedy or heuristic: [Ghaida+, SPIE’11], [Fang+, DAC’12],

[Kuang+, DAC’13], [Fang+, SPIE’14]
• SDP or graph search: [Yu+, ICCAD’11], [Chen+, ISQED’13],

[Yu+, ICCAD’13], [Yu+, DAC’14]

6CPU runtime

Conflict #

ILP: Good performance
but expensive

Greedy or heuristic:
Fast but bad quality

SDP or graph search: Tradeoff

[Yu+, SPIE’14]

The picture
can't be
displayed.

Major Contributions of This Work

• A new layout decomposition framework for TPL/QPL
• ILP à novel linear programming (LP) based algorithm

with iterative rounding scheme

• An odd-cycle based technique to enhance LP solution
quality (which can be better mapped to ILP solution)

• Our experiments obtain comparable quality cf.
previous state-of-the-art, but are 26x to 600x faster
than ILP, and 1.8x to 2.6x faster than SDP

7

The picture
can't be
displayed.

Problem Formulation

l Input
• Uncolored layout patterns
• Minimum coloring distance !"
• Number of colors available (TPL or QPL)

l Output
• Decomposed layout with color assignment for each pattern
• TPL/QPL friendliness
• Stitch insertion is not allowed

8

The picture
can't be
displayed.

Initial ILP Formulation

• Represent color with two binary variables

9

i j

(xi1, xi2) (xj1, xj2)

xi1, xi2, xj1, xj2 2 {0, 1}

(xi1, xi2) ! color

(0, 0) ! 0

(0, 1) ! 1

(1, 0) ! 2

(1, 1) ! 3

xi1 + xi2 1

Additional constraint for TPL
xi1 + xi2 + xj1 + xj2 � 1

(0, 0) (0, 0)

xi1 + (1� xi2) + xj1 + (1� xj2) � 1

(0, 1) (0, 1)

…

The picture
can't be
displayed.

ILP Formulation

• The goal is to meet all the constraints

10

min Objective (1a)

s.t. xi1 + xi2 1, (1b)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V, (1h)

xi1, xi2 2 {0, 1}, 8i 2 V. (1i)

Only for TPL

The picture
can't be
displayed.

LP Relaxation

• Relax integer to continuous variables

11

min Objective (1a)

s.t. xi1 + xi2 1, (1b)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V, (1h)

xi1, xi2 2 {0, 1}, 8i 2 V. (1i)

0 xi1, xi2 1, 8i 2 V

The picture
can't be
displayed.

LPIR

• Linear programming and iterative rounding (LPIR)
• Non-integer solutions

• Fewer non-integers mean closer to optimal solutions of ILP
• Prune non-integer solutions in the feasible set

12

(0.5,0.5)

Reduce
non-integers

The picture
can't be
displayed.

Simple Observation

• Suppose !"# = !%# = 0

13

i j

(xi1, xi2) (xj1, xj2)

xi1 + xi2 + xj1 + xj2 � 1, 8eij 2 Ec, (1c)

xi1 + x̄i2 + xj1 + x̄j2 � 1, 8eij 2 Ec, (1d)

x̄i1 + xi2 + x̄j1 + xj2 � 1, 8eij 2 Ec, (1e)

x̄i1 + x̄i2 + x̄j1 + x̄j2 � 1, 8eij 2 Ec, (1f)

x̄i1 = 1� xi1, 8i 2 V, (1g)

x̄i2 = 1� xi2, 8i 2 V (1h)

xi2 + xj2 = 1

The second bits must be different

The picture
can't be
displayed.

Non-integers along Odd Cycles

• Consider the constraints along an odd cycle
• Suppose !"# = !%# = !&# = !'# = !(# = 0

14

k

i

j

m

l
(0,0)

(0,1) (0,0)

(0,1)

(0,0)

k

i

j

m

l
(0,0)

(1,1) (0,1)

(0,0)

(0,1)

xi2 = xj2 = xk2 = xl2 = xm2 = 0.5

xi2 + xj2 = 1,

xj2 + xk2 = 1,

xk2 + xl2 = 1,

xm2 + xi2 = 1

k

i

j

m

l

The picture
can't be
displayed.

LPIR – Add Odd Cycle Constraints

• Additional constraints
• Prune non-integer solutions from feasible set

15

s.t.

xi1 + xj1 + xk1 + xl1 + xm1 � 1,

(1� xi1) + (1� xj1) + (1� xk1) + (1� xl1) + (1� xm1) � 1

Help resolve potential non-integers in the second bits

k

i

j

m

l

(xk1, xk2)

(xl1, xl2)

(xm1, xm2)

(xi1, xi2)

(xj1, xj2)

The picture
can't be
displayed.

LPIR – Objective Function Biasing

• Push non-integer solutions to integers by
dynamically adapting the objective function

• If !" = 0.6, it means !" tends to be 1
• If !" = 0.4, it means !" tends to be 0

16

Cannot handle (0.5, 0.5)

If xi > 0.5, obj obj + (1� xi).
If xi < 0.5, obj obj + xi.

The picture
can't be
displayed.

LPIR – Binding Constraints Analysis

• Try to handle !"#, !"% = (0.5, 0.5)

17

 SicSic Si1Si1 Si2Si2

 Constraint set for xi1xi1

 Constraint set for xi2xi2

 ii

 xi1 = 0.5xi1 = 0.5
 xi2 = 0.5xi2 = 0.5

 . . . + xi1 + . . . c1. . . + xi1 + . . . c1
 . . . + xi1 + . . . c2. . . + xi1 + . . . c2
 . . . + xi1 + . . . c3. . . + xi1 + . . . c3
 . . . + xi1 + . . . c4. . . + xi1 + . . . c4

 Si1Si1

 . . . + xi2 + . . . � c5. . . + xi2 + . . . � c5
 . . . + xi2 + . . . � c6. . . + xi2 + . . . � c6
 . . . + xi2 + . . . � c7. . . + xi2 + . . . � c7
 . . . + xi2 + . . . � c8. . . + xi2 + . . . � c8

 Si2Si2

 . . . + xi1 + xi2 + . . . c9. . . + xi1 + xi2 + . . . c9
 . . . + xi1 � xi2 + . . . � c10. . . + xi1 � xi2 + . . . � c10
 . . . + xi1 + xi2 + . . . � c11. . . + xi1 + xi2 + . . . � c11

 SicSic

Try pushing !"# to 0 Try pushing !"% to 1 Check !"#, !"% = (0, 1)

The picture
can't be
displayed.

Graph Simplification – Iterative Vertex
Removal
• Iterative vertex removal
• Density aware recovery

18

3

2

4

1

5

3

2

4

1

5

1

3

2

4

1

5

1
2

3

2

4

1

5

1
2
3
4
5

The picture
can't be
displayed.

Graph Simplification: Bi-connected
Component Extraction
• Color recovery

• Color rotation on each component

19

3

2

4

1

5

6

8

7
3’

4
5

4’

6

8

7

3

2

1

b

a

c

3

2

4

1

5

6

8

7

Color rotation is needed

The picture
can't be
displayed.

Final Coloring Results

Graph Simplification
Generate Simplified Components

Kernel Coloring - LPIR

Vertex Color Recovery

Construct Conflict Graph

Input Layout

Overall Flow

20

Binding Constraint Analysis

LP Relaxation

Add additional constraints
 and objective biasing

Solving LP

Non-integer
reduced?

N

Y

Simplified
Component

Colored
Component

ILP with objective = 0

Detect non-integer bits

The picture
can't be
displayed.

Experimental Environment Setup

• Implemented in C++
• 8-Core 3.4GHz Linux server
• 32GB RAM
• ISCAS benchmark from [Yu+, TCAD’15]
• LP solver Gurobi was used

21

The picture
can't be
displayed.

Experimental Results on TPL

22

TPL conflict# TPL runtime

Baseline 1: ILP [Yu+, TCAD’15]
Baseline 2: SDP [Yu+, TCAD’15]
LPIR achieves almost the same conflict numbers as ILP and SDP,
but 26x faster than ILP and 1.8x faster than SDP

The picture
can't be
displayed.

Experimental Results on QPL

23

QPL conflict# QPL runtime

Baseline 1: ILP [Yu+, DAC’14]
Baseline 2: SDP [Yu+, DAC’14]
LPIR achieves less than 2% degradation in conflict numbers than SDP,
but 600x faster than ILP and 2.6x faster than SDP

ILP failed to finish

The picture
can't be
displayed.

Conclusion

• This paper proposes a new layout decomposition
framework for TPL/QPL
• Novel linear programming (LP) based algorithm with

iterative rounding
• Odd-cycle based pruning technique to enhance LP quality
• Very good results cf. previous state-of-the-art decomposer

• Future work
• Lithography impacts (e.g., hotspots) from different

decomposition solutions
• Decomposition friendliness from early design stages like

placement and routing

24

The picture
can't be
displayed.

Thanks!

25

