
GPU Acceleration in VLSI Back-end Design: Overview and Case
Studies (Invited Talk)

Yibo Lin
CECA, CS Department
Peking University
yibolin@pku.edu.cn

ABSTRACT
The semiconductor industry keeps seeking for reducing the design
time and efforts in modern integrated circuit implementation, which
often incorporates billions of transistors. Among the entire design
flow, back-end design involving the physical implementation takes a
significant portion of the design time. Recent advances in GPU accel-
eration bring new opportunities to speedup the design closure. In this
tutorial, we review the efforts in literature and current status on accel-
erating the back-end design automation algorithms. We summarize
the challenges in the key design stages such as placement, routing,
and timing anaylsis, and provide several case studies on how to enable
massive parallelism in practice.

1 INTRODUCTION
The semiconductor industry is encountering two challenges: a) in-
creasingly large designs; b) complicated design constraints and objec-
tives. These challenges lead to more computation efforts required to
search for legal solutions that can satisfy all the constraints, eventually
causing longer design cycles and slow convergence to optimal objec-
tives, especially in the back-end design flow. Thus, the industry keeps
in seeking for reducing design time and effort in modern integerated
circuit (IC) implementation incorporating billions of transistors.

Recent advances in GPU bring new opportunities for high-performance
design automation. With new GPU architectures like Volta, Turing,
and Ampere that integrate ultra-fast tensor cores and new wire-
based communication protocol NVLink, NVIDIA reported exponential
growth in both the number of floating point operations per second
(FLOPS) and the peak memory bandwidth in the past 10 years [1].

However, even with such progress in GPU hardware, which has
already achieved competitive performance in accelerating computa-
tion tasks in fields like machine learning and scientific computing,
obtaining notable benefits from GPU acceleration in the back-end
algorithms is still challenging. The main reasons are as follows: a) di-
verse workloads; b) complicated computation kernels; c) interleaving
efficiency bottlenecks. Firstly, VLSI back-end design flow usually con-
tains placement, routing, timing analysis, etc., involving algorithms in
combinatorial optimization, graph theory, and greedy heuristics. The
algorithms may work on matrices, graphs, and even geometries with
both regular and irregular computation patterns, resulting in diverse
workloads that are difficult to parallelize. Secondly, The computation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415765

kernels of back-end algorithms are usually complicated with all kinds
of customized heuristics, quite different from those clean and sim-
ple kernels extensively explored in the high-performance computing
(HPC) community, like matrix multiplication, single-source shortest
path, and page rank. We usually cannot directly apply the techniques
developed in HPC to accelerate practical kernels. Thirdly, there is not
any single kernel that takes significant (more than 80%) amount of
the runtime. On the contrast, we often observe many kernels taking
similar runtime portions such that we have to accelerate all of them
for notable speedup. This leads to dramatic development overhead
and also requires efficient system-level integration to put all kernels
together. Therefore, GPU acceleration on back-end design automa-
tion still remains to be extensively investigated with the emerging
computation power and urgent demands for efficiency.

By incorporating both algorithmic innovation and acceleration
techniques, recent studies have demonstrate that GPU acceleration is
promising to boost the efficiency of key steps in the back-end flow,
including placement, routing, and timing analysis. In this paper, we
will review related progress and summarize the major challenges and
ideas in each specific design stage.

The rest of the paper is organized as follows. Section 2 details the
efforts in GPU accelerated placement; Section 3 reviews the status in
GPU accelerated routing; Section 4 illustrates the progress in GPU
accelerated timing analysis. We also provide case studies along with
related sections to show how GPU acceleration helps to boost the
efficiency in these sections. Section 5 concludes the paper.

2 GPU ACCELERATION FOR VLSI PLACEMENT
In this section, we review the efforts on GPU-accelerated VLSI place-
ment. Placement usually consists of three stages: global placement
(GP), legalization (LG), and detailed placement (DP). Global place-
ment determines the rough locations of standard cells in the layout
with possibly small overlaps. Legalization removes all the overlaps
to satsify all the design rules. Detailed placement further refines the
placement solution for better quality. In general, GP and DP are more
timing-consuming than LG, so current acceleration efforts have been
concentrated on these two steps, especially on GP.

2.1 Global Placement
GP typically tries to solve the following mathematical programming,

min
x,y

WL(x ,y),

s.t. D(x ,y) ≤ dt ,
(1)

whereWL(·) denotes the wirelength objective and D(·) denotes the
density at any location of the layout.

To solve this problem, two computation kernels must be imple-
mented: wirelength gradient and density map accumulation. Lin et

https://doi.org/10.1145/3400302.3415765

Low-level OPs
C++/CUDA

High-level
Algorithms

Python

Conv

ReLU

WL

Density

LG
Greedy

LG
Abacus

DP
ISM

DP
Swap

Automatic
Gradient

Adam Nesterov

SGD

Placement
Flow

LG
Flow

DP
FlowGP

Flow

Figure 1: Software architecture of DREAMPlace [10].

el propose two efficient kernel implementations for wirelength gra-
dient and density map computation on GPU [2]. There are several
works exploring GPU-accelerated GP based on different placement
algorithms, e.g., [3] based on mPL6 [4] (15× speedup), [5, 6] based on
TimerWolf (2−5× speedup),DREAMPlace [7] based on eplace/RePlAce
[8] (30 − 40× speedup). Most works have been focusing on pure wire-
length minimization and recent DREAMPlace [7] has an option to
consider routability with feedback from external routers as well. All
these efforts can achieve promising speedup with almost no quality
degradation. While GP is a step suitable for GPU acceleration, it has
not yet been a standard practice as the placement algorithms keep
evolving, and the overhead of implementing algorithms on both CPU
and GPU is high. To tackle this problem, DREAMPlace [7] introduces
deep learning toolkit PyTorch [9] to develop placement engines. As
Figure 1 shows, these toolkits wrap low-level operators that can run
on multiple platforms and decouple the high-level algorithm imple-
mentation from the low-level operator acceleration. Thus, developing
placement engines upon such toolkits can naturally achieve multi-
platform support and high efficiency.

2.2 Detailed Placement
DP is a critical step for incremental optimization. In advanced tech-
nology nodes, as the design closure becomes more difficult, DP can be
invoked many times for optimization of various objectives. Typical
DP algorithms often follow greedy local search procedures, involv-
ing combinatorial optimizations and graph algorithms, which are in
general hard to parallelize. Meanwhile, DP usually consists of many
different algorithms with completely discrepant procedures, so there
is almost no generic way for acceleration. Hence, the efforts on accel-
erating DP are much less than GP and rather fragmented.

Recently, Dhar et al accelerate the dynamic programming kernels
in a row-based interleaving algorithm [11], originally from [12]. The
key idea is to fill a 3D dynamic programming table in parallel and
they demonstrate 7× speedup over 20-thread CPU implementation.

We further present systematic acceleration of DP algorithms,ABCD-
Place [13], covering widely used DP algorithms, i.e., global swap,
independent set matching, and local reordering. We overcome the
challenge of lack of parallelism in DP by exploiting batched execution
of cells physically or logically far away from each other. For example,
in global swap, we can simultaneously compute the costs of swap can-
didate cells located at different regions; in independent set matching,

4

65

3

1

2

(a)

4

65

3

1

2

(b)

1

2

3

1’

2’

3’

Graph 1 Graph 2
4

5

6

4’

5’

6’

Weight Matrix Weight Matrix
40 50 60" #

4 a440 a450 a460

5 a540 a550 a560

6 a640 a650 a660
<latexit sha1_base64="Utl2oCBXVn0JmqvuGw+dx90Tres=">AAAEOnicfVJNj9MwEE03fCzhqwtHLiMitpyqpF9wXMQBjotEd1eKo8px3dSq4wTbWaiy+Wf8EcSNG+LKD8BJ06rtLjtSoqeZ9/zGM44yzpT2vB+tA/vO3Xv3Dx84Dx89fvK0ffTsTKW5JHRMUp7KiwgrypmgY800pxeZpDiJOD2PFu+r+vkllYql4rNeZjRMcCzYjBGsTWrS/okCB0U0ZqKIeEoWWEq8LAtionSOYdCBYxhWv1EHAKEdrqEFhheWDsDAUPCkGAw6ZYOGGzQyqBYDDFep4YY23NCGW7TRKjXa0EYb2mhDQ1RMm0a28OoCDqDQmbRdr+vVAdeB3wDXauJ0cnTwAU1TkidUaMKxUoHvZTossNSMcGpsckUzbExiGhgocEJVWNRbKOGVyUxhlkrzCQ11dltR4ESpZRIZZoL1XO3XquRNtSDXs7dhwUSWayrIymiWc9ApVCuFKZOUaL40ABPJTK9A5lhios3id1wivp6P4yBBv5I0SbCZHIokLgM/LMwcVS5p1UOBOJ1pxLGIOXV9JFk811dluStcUH2z8GotQbI+YV9oHEkt7t3mCugym2Oh06Rwe2XTA9ScLri97bJf3upnDpfsG+Vl0P+/Iew5uv0S1qaVW30xcPs7vqYx2Lc2T8/ff2jXwVmv6/e73qeeewLNIzy0XlgvrdeWb72xTqyP1qk1tkjrXStuZa0v9nf7l/3b/rOiHrQazXNrJ+y//wCgTFwa</latexit>

10 20 30" #
1 a110 a120 a130

2 a210 a220 a230

3 a310 a320 a330
<latexit sha1_base64="BMD1NNxVQ9d26Elgzv1BKDy/7kE=">AAAEOnicfVJNj9MwEHU2fCzhqwtHLiMitpyqfBzguIgDHBeJ7q4UR5XjuqlVxwmOs1Bl88/4I4gbN8SVH4CbplHbXXakRE8z7/mNZ5wUgpfa835YB/adu/fuHz5wHj56/OTp4OjZWZlXirIxzUWuLhJSMsElG2uuBbsoFCNZIth5sni/qp9fMlXyXH7Wy4LFGUkln3FKtElNBj9x5OCEpVzWicjpgihFlk1NTTTOMfhDOIZg9QuHABjvcA0tMry4cQB8QyGT2veHTYeCHoUGtWKAYJ0KelrQ04ItWrhOhT0t7GlhT8NMTrtGtvD6Ag7g2JkMXG/ktQHXgd8BF3VxOjk6+ICnOa0yJjUVpCwj3yt0XBOlORXM2FQlK4gxSVlkoCQZK+O63UIDr0xmCrNcmU9qaLPbippkZbnMEsPMiJ6X+7VV8qZaVOnZ27jmsqg0k3RtNKsE6BxWK4UpV4xqsTSAUMVNr0DnRBGqzeJ3XBKxmY/jYMm+0jzLiJkcThRpIj+uzRzLSrFVDzUWbKaxIDIVzPWx4ulcXzXNrnDB9M3Cq40Eq/aEfaFxpK04uM0V8GUxJ1LnWe0GTdcDtJwRuMF22W9u9TOHK/6NiSYK/28Ie45u2MDGdOXWXgzccMfXNAb71ubp+fsP7To4C0Z+OPI+Be4JdI/wEL1AL9Fr5KM36AR9RKdojKj1zkqtwvpif7d/2b/tP2vqgdVpnqOdsP/+A6ybW9I=</latexit>

(c)

Figure 2: Steps for batch-based independent set matching [13].
(a) Maximal independent set extraction. (b) Independent set
partitioning. (c) Batched bipartite matching.

we extract an independent set of cells from the entire netlist, which
is, in other words, logically apart from each other, so that we can
solve bipartite assignment independently; in local reordering, we si-
multaneously permute sequences of cells at different placement rows
that do not share common nets. Figure 2 provides a concrete view
on making the independent set matching algorithm parallelizable. In
the first step, we perform maximal independent set extraction to the
entire circuit netlist; this step can be solved with parallel Blelloch’s
algorithms [14]. In the second step, we partition the independent set
to group cells physically closing to each other; this step can be solved
with parallel k-means clustering. In the last step, we can solve each
bipartite matching independently with parallel auction algorithm [15].
Eventually, more than 15× speedup can be achieved over single-thread
CPU on million-size designs without quality degradation, while the
speedup from the 20-thread CPU implementation saturates at 2 − 5×.
Although we design the algorithms with similar intuitions for acceler-
ation, the actual implementations are completely different, requiring
high development efforts; e.g., the lines of source code for DP is much
more than that for GP [7]. This is probably one of the reasons why
there lack efforts on DP acceleration. So far, all the published works
on DP acceleration are still pure wirelength-driven.

3 GPU ACCELERATION FOR VLSI ROUTING
Routing is known as the most time-consuming step in the back-end
design flow. Due to its complexity, modern routing is usually divided
into global routing and detailed routing at different granularity, while
the kernel routing algrithms are mostly based on maze routing.

Exploiting GPU for routing has several challenges: a) lack of paral-
lelism for each net; b) divergence of computation patterns between
nets; c) huge random memory access. As most nets are local, the over-
head of exploring parallel single-net routing is high due to its lack
of parallelism. However, the existence of large nets makes it time-
consuming to route with only a single thread. Such heterogeneity
of nets also leads to quite different computation patterns at runtime,
causing high synchronization overhead. As routing is conducted on
large graphs or grids, poor memory locality often brings overhead
in the efficiency as well. In the literature, GPU acceleration on both
FPGA and ASIC routing has been investigated.

2

Figure 3: Net decomposition to increase the parallelism [19].

3.1 FPGA Routing
FPGA routing essentially tries to find disjoint paths on a routing
resource graph. Shen et al propose the first GPU-accelerated FPGA
routing leveraging GPU-friendly single-source shortest path (SSSP)
kernels [16, 17]. Instead of using the Dijkstra or A* search algorithm,
they adopt the Bellman-Ford algorithm, which is suitable for massive
parallelization on GPU. To increase the parallelism, they also limit the
search bounding boxes such that nets with bounding boxes apart from
each other can be routed in parallel. With both single-net and multi-
net parallelism, they demonstrate 21× speedup over the sequential
VPR router [18].

3.2 ASIC Routing
ASIC routing is different from FPGA routing, as it works on grids
instead of graphs, and the design rules are more complicated. Han et
al develop a GPU-accelerated global router [19] and compare with
an efficient router NCTUgr 2.0 [20] on CPU. By decomposing the
multi-pin nets into 2-pin nets, as shown in Figure 3, they increase the
parallelism and simplify the routing of the each net. Eventually, they
achieve 2.5 − 3.9× speedup with 2.5% wirelength degradation. They
later improve the scheduling strategy for net-level concurrency and
GPU implementation of the maze routing algorithm [21], achieving
4.0× speedup with 1% wirelength degradation compared with another
academic router NTHU-Route 2.0 [22]. So far, we have not seen any
work that can achieve significant speedup without any quality loss, for
making GPU acceleration even faster than distributed CPU computing
is nontrivial. Meanwhile, there is no acceleration work considering
complicated design rules in detailed routing yet.

4 GPU ACCELERATION FOR TIMING ANALYSIS
Timing analysis is a ubiquitous step in both front-end and back-end
design. It is frequently invoked to guide timing optimization. The
runtime characteristics of timing analysis in the back-end flow are
different from that in the front-end. In back-end design, computing
interconnet delays takes quite much time, since physical wiring needs
to be considered. Current efforts on GPU-accelerated timing analysis
mostly lie in static timing analysis (STA) and statistical STA (SSTA).

4.1 Static Timing Analysis
In static timing analysis, timing engines need to accomplish a series
of tasks: net delay computation, cell delay computation, and timing
propagation. Net delay can be computed from the RC tree of each
net with parasitics extracted from routing solutions. Cell delay is

RC Delay Timing Propagation
0

20

40

60

80

100

leon2: 1.6M gates
OpenTimer with 40 CPU cores

Prepare

Prop

Delay
42

10

48

Ru
nt
im

e
(%
)

Figure 4: Runtime breakdown for OpenTimer to compute full
timing on a million-gate circuit using 40 CPUs [23].

RC Delay
Computation

Copy Edge
List to GPU

RC Tree
Flattening

RC Delay
Computation

Levelization

Copy Timing
Arcs to GPU

Levelization

Timing
Propagation

Copy Look-up
Tables to GPU

Forward
Propagation

Backward
Propagation

Start

End

CPU Tasks GPU Tasks

Figure 5: Overall taskflow of the GPU-accelerated STA [23].

!"#$

!"#$%&'()'*+,+-. /&0&1+2$%+3-

!"#$%&'45$"6'*+,+-.

!"#$ %&

!'() %&

$(*$%&

!%&'()*&#

!"#$%&'()'*+,+-. 78+1#'953"'*$:;:

!"#$%&'45$"6'*+,+-.

#!*+%&

!$+%&

$#"*+%&

Figure 6: Runtime breakdown of leon2 (21M nodes) [23].

usually computed from lookup tables (LUTs) given the input slews
and load capacitance of each cell. Timing propagation finishes the
computation of arrival time (w. forward propagation), required arrival
time (w. backward propagation), and slack. It needs to be noted that
the computation patterns of slews and load capacitance are similar to
that of the forward propagation.

Recent works have investigated LUT-based cell delay computation
and timing propagation on both ASIC and FPGA [24, 25], while net
delays are not considered and levelization is done on CPU. Our study
on the state-of-the-art open-source timing engine OpenTimer [26]
reveals that these two accelerated steps are not actually the runtime
bottleneck [23], as shown in Figure 4. Net delay computation and
levelization take more than 90% of the total runtime in a full timing
analysis. Therefore, we propose acceleration techniques for net de-
lay computation considering Elmore delay models with precomputed

3

breadth-first search ordering and hybrid CPU-GPU levalization to
compose a fully accelerated STA engine. The overall flow is illustrated
in Figure 5, where a majority of the computation steps have been
moved to GPU. We leave the backward propagation on CPU because
it only takes a small portion of the total runtime and the benefits
from acceleration are marginal. Eventually, we demonstrate up to
3.69× speedup on million-size benchmarks over 20-thread CPU im-
plementation for full timing analysis. Figure 6 shows the comparison
on the runtime breakdown before and after GPU acceleration on a cir-
cuit with 21M nodes. We observe significant speedup on the runtime
bottlenecks.

4.2 Statistical Static Timing Analysis
SSTA is another variation of timing analysis based on Monte Carlo
simulations. Such kind of analysis naturally fits massive paralleliza-
tion on GPU and thus there have been several works exploring such
directions [27–29].

5 CONCLUSION
In this tutorial, we have reviewed the recent efforts on accelerating
placement, routing, and timing analysis with GPU. These are funda-
mental steps for routability and timing optimization in the back-end
design flow. From the current status, we summarize the high-level
challenges for GPU acceleration as follows:

• lack of parallelism and irregular computation patterns as men-
tioned in Section 1;

• high expectation to quality and inevitable quality degradation;
• lack of available baseline implementations and high develop-
ment overhead.

GPU acceleration has not been extensively investigated in design au-
tomation yet. There lack mature and standard acceleration paradigms
for both academia and industry to follow, and supporting both CPU/GPU
is too expensive for most existing tools.

5.1 Future Directions
Future efforts on GPU acceleration can include following directions:

• algorithmic innovation to accelerate practical design stages,
such as timing- or routability-driven placement, detailed rout-
ing, timing analysis with industrial-strength delay models;

• pushing the speed limit on really hard kernels, such as batched
bipartite matching, maze routing, and timing propagation.

• universal frameworks or programmingmodels that can support
CPU/GPU programming naturally, such as Tensorflow/PyTorch
in deep learning, or something even more fundamental.

All these aspects remain to be explored. When it comes to GPU accel-
eration, at least one magnitude of speedup over multi-thread CPU is
often expected. However, this is unreasonable, unfair, and not good
to the advancement of the field. As the design automation problems
are extremely hard, pushing the cutting edges little by little is very
meaningful and will attract more research efforts.

ACKNOWLEDGE
This project is supported in part by the Beijing Municipal Science and
Technology Program (No. Z201100004220007) and the National Key
Research and Development Program of China (No. 2019YFB2205000).

REFERENCES
[1] “Leader in gpu computing,” https://www.nvidia.com/en-gb/about-nvidia/

ai-computing/, Tech. Rep., 2019.
[2] C.-X. Lin and M. D. Wong, “Accelerate analytical placement with gpu: A generic

approach,” in DATE. IEEE, 2018, pp. 1345–1350.
[3] J. Cong and Y. Zou, “Parallel multi-level analytical global placement on graphics

processing units,” in ICCAD. ACM, 2009, pp. 681–688.
[4] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method for circuit

placement,” in ISPD. ACM, 2005, pp. 185–192.
[5] A. Al-Kawam and H. M. Harmanani, “A parallel gpu implementation of the timber

wolf placement algorithm,” in 2015 12th International Conference on Information
Technology-New Generations. IEEE, 2015, pp. 792–795.

[6] B. Bredthauer, M. Olbrich, and E. Barke, “Stp-a quadratic vlsi placement tool using
graphic processing units,” in International Symposium on Parallel and Distributed
Computing (ISPDC). IEEE, 2018, pp. 77–84.

[7] Y. Lin, Z. Jiang, J. Gu,W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAMPlace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi placement,” IEEE
TCAD, 2020.

[8] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution quality
and routability validation in global placement,” IEEE TCAD, 2018.

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-performance
deep learning library.” Curran Associates, Inc., 2019, pp. 8024–8035.

[10] Y. Lin, D. Z. Pan, H. Ren, and B. Khailany, “DREAMPlace 2.0: Open-source gpu-
accelerated global and detailed placement for large-scale vlsi designs,” in China
Semiconductor Technology International Conference (CSTIC), Shanghai, China, June
2020.

[11] S. Dhar and D. Z. Pan, “GDP: GPU accelerated detailed placement,” Sept 2018.
[12] S. W. Hur and J. Lillis, “Mongrel: hybrid techniques for standard cell placement,” in

ICCAD, 2000, pp. 165–170.
[13] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “Abcdplace: Accelerated

batch-based concurrent detailed placement on multi-threaded cpus and gpus,” IEEE
TCAD, 2020.

[14] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal independent
set and matching are parallel on average,” CoRR, vol. abs/1202.3205, 2012. [Online].
Available: http://arxiv.org/abs/1202.3205

[15] D. P. Bertsekas, “A new algorithm for the assignment problem,” Mathematical Pro-
gramming, vol. 21, no. 1, pp. 152–171, 1981.

[16] M. Shen and G. Luo, “Corolla: Gpu-accelerated fpga routing based on subgraph
dynamic expansion,” in FPGA, 2017, pp. 105–114.

[17] M. Shen, G. Luo, and N. Xiao, “Exploring gpu-accelerated routing for fpgas,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 30, no. 6, pp. 1331–1345,
2018.

[18] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr,
S. Wang, T. Liu, N. Ahmed et al., “Vtr 7.0: Next generation architecture and cad
system for fpgas,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 7, no. 2, pp. 1–30, 2014.

[19] Y. Han, K. Chakraborty, and S. Roy, “A global router on gpu architecture,” in ICCD.
IEEE, 2013, pp. 78–84.

[20] W.-H. Liu,W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0: multithreaded collision-
aware global routing with bounded-length maze routing,” IEEE TCAD, vol. 32, no. 5,
pp. 709–722, 2013.

[21] Y. Han, D. M. Ancajas, K. Chakraborty, and S. Roy, “Exploring high-throughput
computing paradigm for global routing,” IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), vol. 22, no. 1, pp. 155–167, 2013.

[22] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang, “NTHU-Route 2.0: a
robust global router for modern designs,” IEEE TCAD, vol. 29, no. 12, pp. 1931–1944,
2010.

[23] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,” in ICCAD.
IEEE Press, November 2020.

[24] H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-P. Wen, “Casta: Cuda-
accelerated static timing analysis for VLSI designs,” in 2014 43rd International Con-
ference on Parallel Processing. IEEE, 2014, pp. 192–200.

[25] K. E. Murray and V. Betz, “Tatum: Parallel timing analysis for faster design cycles
and improved optimization,” in 2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 2018, pp. 110–117.

[26] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “Opentimer v2: A new parallel in-
cremental timing analysis engine,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2020.

[27] K. Gulati and S. P. Khatri, “Accelerating statistical static timing analysis using graph-
ics processing units,” in 2009 Asia and South Pacific Design Automation Conference.
IEEE, 2009, pp. 260–265.

[28] J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan, and Y. Zou, “Accelerating
Monte Carlo based SSTA using FPGA,” in Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays, 2010, pp. 111–114.

[29] Y. Shen and J. Hu, “GPU acceleration for PCA-based statistical static timing analysis,”
in 2015 33rd IEEE International Conference on Computer Design (ICCD). IEEE, 2015,
pp. 674–679.

4

https://www.nvidia.com/en-gb/about-nvidia/ai-computing/
https://www.nvidia.com/en-gb/about-nvidia/ai-computing/
http://arxiv.org/abs/1202.3205

