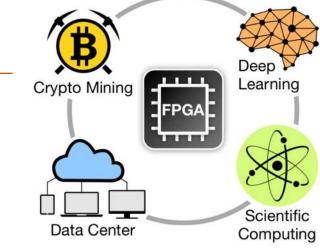


High-Definition Routing Congestion Prediction for Large-Scale FPGAs

Mohamed Baker Alawieh¹, Wuxi Li¹, **Yibo Lin**², Love Singhal³, Mahesh Iyer³ and David Z. Pan¹ ¹ECE Department, University of Texas at Austin ²CS Department, Peking University ³Intel Corporation, USA

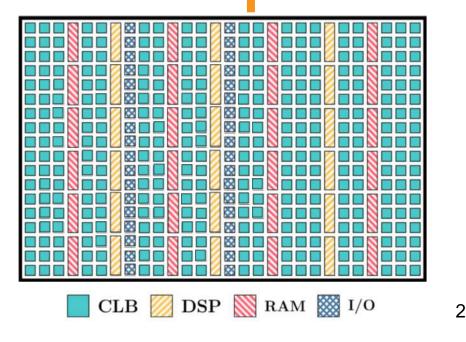
FPGA Routing Congestion Prediction

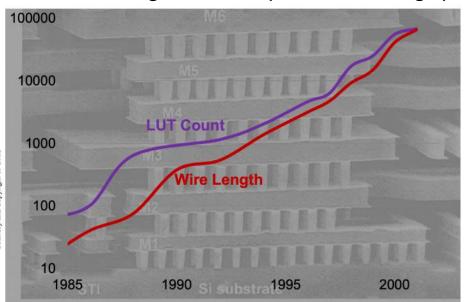
Field Programmabe Gate Arrays

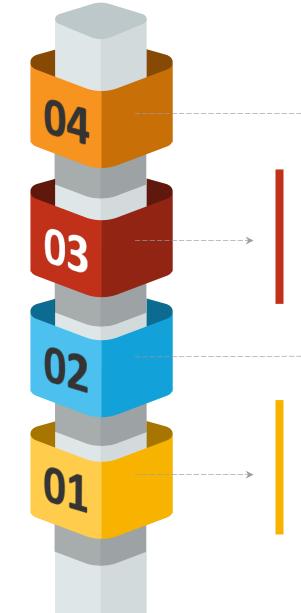

High Energy Efficiency Good Reprogrammability Rapidly Growing Capacity

FPGA Placement

Has a significant impact on FPGA routing quality


Routability Aware


Incorporates congestion prediction into the placement process


Congestion

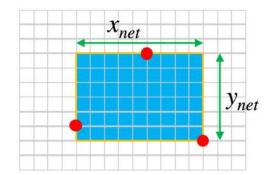
Primitive congestion prediction techniques have demonstrated significant impact on routing quality

Conventional Approaches

RouteNet

Predicts congestion hotspot Design rule violation detection [Xie+, ICCAD'18]

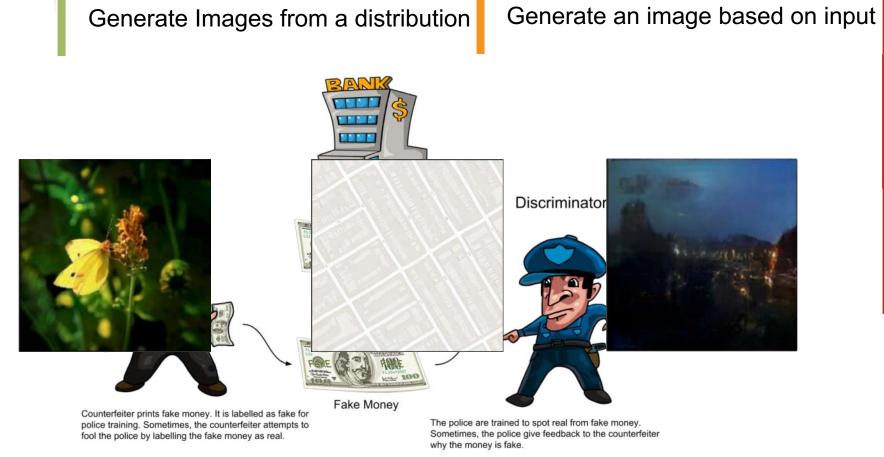
RUDY


Bounding box-based routing estimation Overestimates the routing demand [Spindler+, DATE'07]

GAN-Based

Predicts congestion based on placement Cannot handle industrial-size designs [Yu+, DAC'19]

Regression-based Prediction


Congestion prediction based on global routing info [Pui+, ICCAD'17]

Conditional GANs for Image Translations [Isola+, CVPR 2017]

CGANS

Conditional GANs

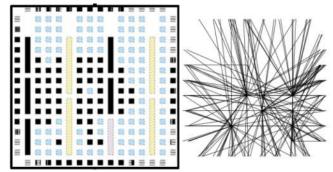
Image Translation

CGANs can be used for the task

Apply domain transfer

Take image from one domain and generate output in another

During training, pairs of matched images are used

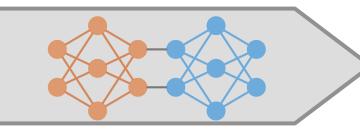

[cartoon credit: Gall, 18, dzone.com]

GANS

Generative Adversarial Networks

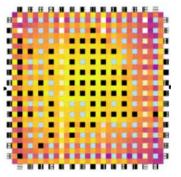
GAN-based Congestion Estimation

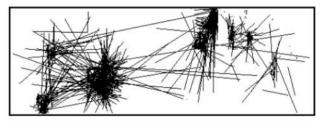
Placement and Netlist Information



፼€Features

Uses VTR academic tool Works for small designs only


Netlist information is encoded using flying lines *For a large design with over 700K nets


This representation becomes obsolete for large designs

CGAN-Based Image Translation

Only 5K nets out of 700K shown

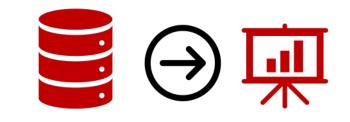
All 700K nets shown

pix2pix model [Isola+, CVPR 2017] Limited resolution 256x256 Cannot handle large-scale FPGAs

High-Definition Routing Prediction for Large FPGAs

🟊 GAN Model

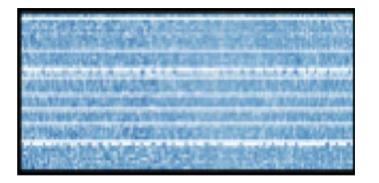
pix2pix model [Isola+, CVPR 2017] Limited resolution 256x256 Cannot handle large-scale FPGAs



Virtex UltraScale+ VU19 has ~663K CLB slices

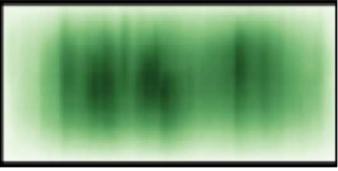
Use a high definition image translation model Handle resolution up to 4000x1000

Uses VTR academic tool Works for small designs only



Novel feature encoding for placement and netlist Use different channels of input image

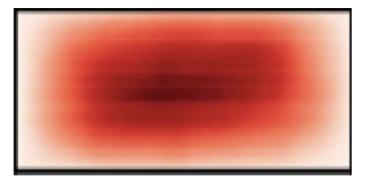
Input Features Encoding


Pin Density

Reflects placement information Encoded on the blue channel

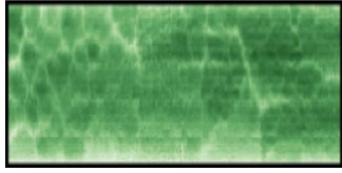
Vertical Demand

Estimtes vertical routing demand Computed analogous to RUDY Encoded on green channel



Resulting **RGB** image

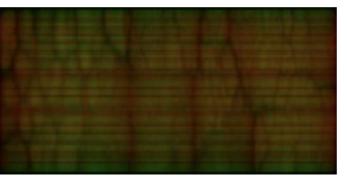
Horizontal Demand


Estimtes vertical routing demand Computed analogous to RUDY Encoded on red channel

Output Features Encoding

Vertical Routing

Routing congestion along the vertical direction



← Horizontal Routing

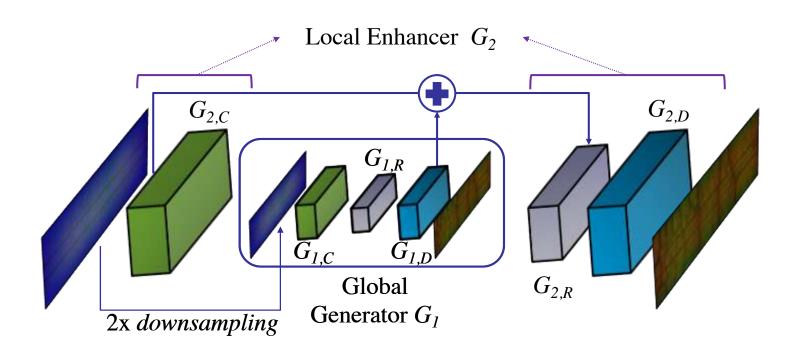
Routing congestion along the horizontal direction

-	-	-	-	_	-	-	_	-	-	-		-	-	-	-	-
		= 1	-		=		-	-							=	
			-		-		-	-					-		=	
			-	-			Ξ	-		-	-			-		
							-			-		T	-	-		
												٩.,				
	<u>.</u>	-			-							- 0	1		-	_11
-														-	-	
-	100		-				-							-		-
			_			-		-						-	-	
-		100.0		-	1.11			-		100.00			1.20			and the second

Resulting **RGB** image

Blue channel left empty

High Definition Image Translation


pix2pixHD [Wang+, CVPR'18]

🚵 Generator Design

Dual generator architecture For high resolution generation

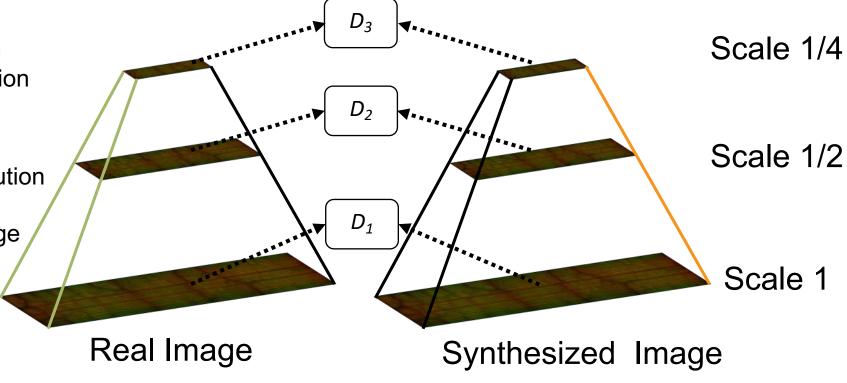
Global Generator (G_1) : Performs the core translation Works at half desired resolution

Local Enhancer (G_2) : Generates high resolution images Fine-tunes details in the image

High Definition Image Translation

pix2pixHD [Wang+, CVPR'18]

📐 Generator Design


Dual generator architecture For high resolution generation

Three level discrimination

Global Generator (G_1) : Performs the core translation Works at half desired resolution

Local Enhancer (G_2) : Generates high resolution images Fine-tunes details in the image

High Definition Image Translation

Generator Design

Dual generator architecture For high resolution generation

Global Generator (G_1) : Performs the core translation Works at half desired resolution

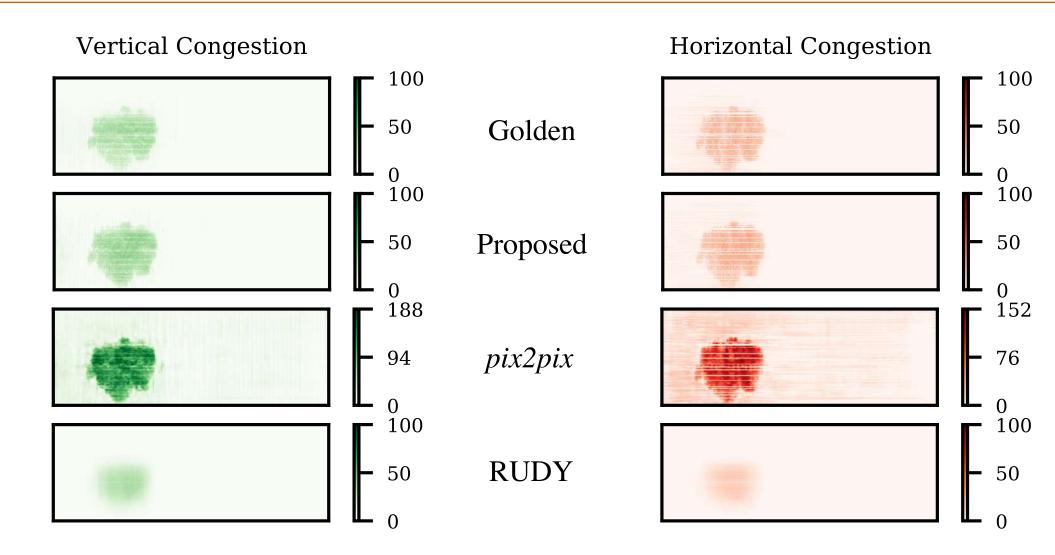
Local Enhancer (G_2) : Generates high resolution images Fine-tunes details in the image

🚳 Discriminator Design

Three level discrimination

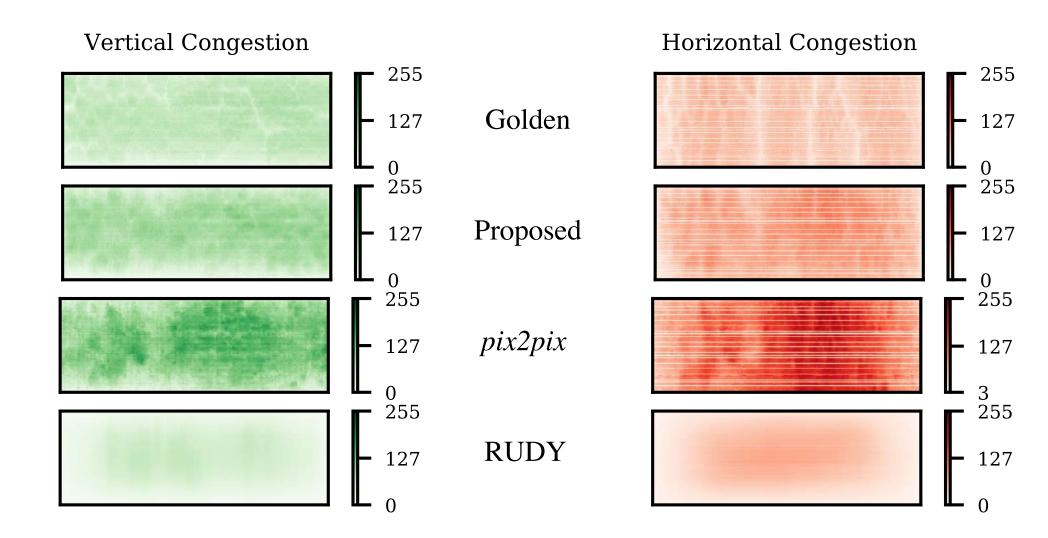
GAN Loss Feature Mapping loss

$$\min_{G} \max_{D_1, D_2, D_3} \sum_{k=1, 2, 3} \mathcal{L}_{GAN}(G, D_k) + \lambda \mathcal{L}_{FM}(G, D_k)$$

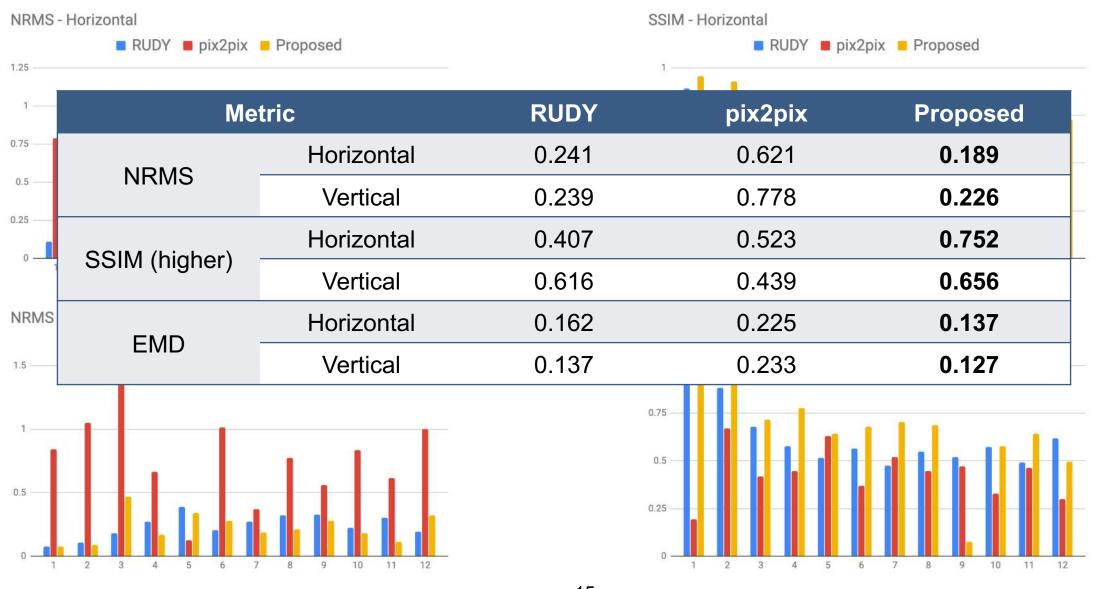

$$\mathcal{L}_{GAN}(G, D_k) = \mathbb{E}_{x, y}[\log D_k(x, y)] + \mathbb{E}_x[\log (1 - D_k(x, G(x)))] \mathcal{L}_{FM}(G, D_k) = \mathbb{E}_{x, y} \sum_{i=1}^T ||D_k^{(i)}(x, y) - D_k^{(i)}(x, G(x))||_1$$

Experimental Setup

Benchmark ISPD 2016 Placement: elfPlace [Li+, ICCAD'19] Routing: NCTU-GR [Liu+, TCAD'13]	Training Setup Train 12 different models 11 for train, 1 for test					Evaluation Metrics NRMS: Normalized root mean square			
For each design: 200 placements are generated Placements are routed Congestion maps obtained		asectn[anu+ d feratures		55K 66K 170K 172K 174K 352K 355K 216K 366K 600K 363K 602K	#RAN 0 100 600 600 1000 1000 1000 1000 1000	0 100 500 500 EMID: E ⁶⁰⁰ E ⁶⁰⁰	12 121 121 1281 1281 1281 1281 2541 mQy40g (larity index distance ixel distributions	
		Resources	538K	1075K	1728	768	N/A		


Sample Results – FPGA 02

RUDY ~ [Spindler+, DATE'07] pix2pix ~ [Yu+, DAC'19]*



Sample Results – FPGA 08

RUDY ~ [Spindler+, DATE'07] pix2pix ~ [Yu+, DAC'19]*

Quantitative Comparison

15

Model Application

	Decian	Full Routing Capacity					
🧮 In Placement	Design	Rudy	Proposed	Imp			
Models were used for routability	FPGA-1	336117	336117	0.00%			
estimation within elfPlaceF	FPGA-2	691618	691618	0.00%			
replacing RUDY	FPGA-3	3062734	3062734	0.00%			
	FPGA-4	5550659	5551473	-0.01%			
	FPGA-5	10538770	9797007	7.04%			
	FPGA-6 5773333 57	5773333	0.00%				
	FPGA-7	9182199	9163640	0.20%			
	FPGA-8	9053192	9053192	0.00%			
	FPGA-9	11641853	11635870	0.05%			
	FPGA-10	5515319	5515319	0.00%			
	FPGA-11	11777500	11757650	0.16%			
	FPGA-12	6235694	6235694	0.00%			

FPGA-5 is the most congested design

Model Application

		Design	Full Ro	outing Capa	acity	Reduced Routing Capacity			
	🧧 In Placement	Design	Rudy	Proposed	Imp	Rudy	Proposed	Imp	
	Models were used for routability	FPGA-1	336117	336117	0.00%	336117	336117	0.00%	
	estimation within elfPlaceF	FPGA-2	691618	691618	0.00%	691618	691618	0.00%	
	replacing RUDY	FPGA-3	3062734	3062734	0.00%	3062734	3062734	0.00%	
RC	UTED WL REDUCTION	FPGA-4	5550659	5551473	-0.01%	5557608	5551473	0.11%	
		FPGA-5	10538770	9797007	7.04%	N/A	N/A	N/A	
		FPGA-6	5773333	5773333	0.00%	5777149	5773333	0.07%	
	Up to	FPGA-7	9182199	9163640	0.20%	9199730	9163640	0.39%	
	7%	FPGA-8	9053192	9053192	0.00%	9055093	9055093	0.00%	
	170	FPGA-9	11641853	11635870	0.05%	11652436	11635870	0.14%	
		FPGA-10	5515319	5515319	0.00%	5515319	5515319	0.00%	
		FPGA-11	11777500	11757650	0.16%	11877778	11757650	1.01%	
		FPGA-12	6235694	6235694	0.00%	6224962	6235694	-0.17%	

FPGA-5 is the most congested design

Conclusions

- We propose an accurate FPGA routing congestion estimation framework based on high-definition image translation
- Our proposed approach demonstrate superior accuracy compared to state-of-the-art techniques
- Our proposed approach results in up to 7% reduction in routed wirelength

Future Work

Further improve feature representation

- > Preserve original connectivity information in feature encoding
- Develop new placement algorithm built around such accurate congestion estimation
- Extend the application to ASIC