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Data Efficient Lithography Modeling
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CNN-5 [Watanabe+, SPIE’17]
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K-Medoids Clustering

(A variation of K-Means Clustering)
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High Accuracy � big training data
Expensive to prepare data

• Time consuming

• Manufacturing cost
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Technology Transition from N10 to N7

Active Learning with Clustering

Transfer & Active Learning Flow

Problem formulation

• Improve data efficiency 

• 3~10X reduction of training data

• Reduce turn-around time

• Increase model accuracy

TFk scheme
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Rigorous Compact

Rigorous simulation

• Physics-level simulation

• e.g., Synopsys Sentaurus Lithography

Compact model

• e.g., Mentor Graphics Calibre, machine learning models

>15h < 1s

Optical Sources
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Resist Materials

Resist A Resist B

Different dissolution slopes

Prediction Efficiency Data Demanding

For 1K 2x2um2 clips Compact model

Deep Neural Networks for Lithography Modeling

“You just keep on adding layers, until the test error 

doesn’t improve anymore.”

⎯ Yoshua Bengio

Neural networks are getting deeper for higher accuracy 

AlexNet-8, VGG-19, ResNet-101, ResNet-1202

• Extend 5-layer CNN to 10-layer ResNet

• Solve gradient vanishing with shortcut connections
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Case I: From N10 to N7
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Case II: From N7a to N7b

Case I Case II
Knowledge Transfer N10➔N7a N7a➔N7b

Dataset Similarity Medium High

Best F 0/4 8

From N10 to N7


