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Abstract—As the integrated circuits (IC) technology continues
to scale, resolution enhancement techniques (RETs) are manda-
tory to obtain high manufacturing quality and yield. Among
various RETs, sub-resolution assist feature (SRAF) generation
is a key technique to improve the target pattern quality and
lithographic process window. While model-based SRAF insertion
techniques have demonstrated high accuracy, they usually suffer
from high computationagit l cost. Therefore, more efficient
techniques that can achieve high accuracy while reducing runtime
are in strong demand. In this work, we leverage the recent
advancement in machine learning for image generation to tackle
the SRAF insertion problem. In particular, we propose a new
SRAF insertion framework, GAN-SRAF, which uses conditional
generative adversarial networks (CGANs) to generate SRAFs
directly for any given layout. Our proposed approach incor-
porates a novel layout to image encoding using multi-channel
heatmaps to preserve the layout information and facilitate layout
reconstruction. Our experimental results demonstrate ∼14.6×
reduction in runtime when compared to the previous best
machine learning approach for SRAF generation, and ∼144×
reduction compared to model-based approach, while achieving
comparable quality of results.

I. INTRODUCTION

While the integrated circuits technology node continues to
scale, the photolithography techniques are supposed to keep up
the pace and cope with the ever shrinking feature size. In fact,
low image contrast and complex target pattern shapes make
it extremely difficult for low−k1 lithography, the mainstream
technique, to achieve desired lithographic process windows
[1], [2]. Hence, resolution enhancement techniques have been
the major strategy to improve lithographic process window.

Among these techniques, Sub-Resolution Assist Feature
(SRAF) generation is used to improve the lithographic process
window of target patterns. These assist features are not actually
printed; instead, the SRAF patterns would deliver light to the
positions of target patterns at proper phase which can improve
the robustness of target printing to lithographic variations [3].
In practice, the process variation band is typically used as a
measure of such robustness, where the goal is to achieve the
minimum possible band [3].

In literature, different SRAF generation approaches have
been proposed and adopted. The rule-based approach can
achieve acceptable accuracy within short execution time for
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simple designs and regular target patterns [1], [4], [5]. How-
ever, the rule-based approach cannot handle complex shapes
as it requires significant pre-processing engineering efforts. On
the other hand, two trends of model-based SRAF generation
methods have been proposed and these can be categorized
based on the lithographic computations involved. The first
trend uses simulated aerial images to seed the SRAF gen-
eration [1], [2], while the other applies inverse lithography
technology (ILT) and computes the image contour to guide the
SRAF generation [6]. Despite better lithographic performance
compared to the rule-based approach, the model-based SRAF
generation is very time-consuming and it is difficult to achieve
the same SRAFs around the same layout configuration, i.e., not
consistent [3].

Recently, machine learning has been proposed to tackle the
problem of SRAF insertion to reduce the computational cost
associated with model-based methods [3], [7]. The proposed
method relies on SRAF features extraction with local sampling
scheme to obtain the optimal SRAF map. The key idea is to
use a 2D grid plane where a classification model is trained
to predict the probability of existence of SRAF in each grid
based on the extracted features. Although this approach has
demonstrated significant speedup compared to model-based
approaches while achieving comparable results in terms of
process variation band, there is still significant room for
improvement as we will show in this paper.

Motivated by the recent advancement in the field of image
processing in computer vision [8]–[12], we elect in this work
to address the SRAF generation problem from a new perspec-
tive. In fact, a layout in its essence can be simply viewed
as an image; hence, machine learning techniques developed
for image related task can come in handy. Moreover, it has
been shown that using convolutional neural networks has
demonstrated superior runtime and performance compared to
local decision based approaches when dealing with visual
data. Specifically, Conditional Generative Adversarial Network
(CGAN) has been leveraged to perform image translation
tasks. In other words, given related images in two different
domains, CGAN can be trained to translate images from one
domain to another [8], [9]. Examples of such applications
include, among others, image colorization and aerial to map
and edge to photo translations [9]. In addition, CGAN has been
recently adopted as a means to enhance the optical proximity
correction in IC manufacturing [13].

In this work, we propose to use CGAN for SRAF generation
by casting the problem into an image translation task where the
two images domains are: (i) original layout and (ii) layout with
SRAFs. Hence, generating an SRAF scheme for a particular
layout can be seen as translating the layout image from the first
domain (i.e., original layout) to the second domain (i.e., layout



with SRAFs). Towards this end, layout files are mapped into
images in a novel encoding scheme that captures the layout
details. This scheme incorporates a multi-channel heatmap
encoding of different layout objects into different layers of an
image [14]–[17]. Additionally, this encoding is accompanied
by a fast GPU-accelerated decoding scheme to recover layout
schemes from images generated by CGAN. With our proposed
encoding/decoding framework, a CGAN is trained to generate
layouts with SRAF inserted using a labeled data set. Once
trained, the CGAN can take an original layout image as an
input and generate a new image with SRAFs inserted. These
generated images can be eventually get mapped back to layout
files.

In this SRAF generation framework, our main contributions
are summarized as follows:

• A conditional generative adversarial network is used for
the first time for SRAF generation.

• We cast the SRAF generation problem as an image-to-
image translation task where the layout is translated from
its original domain to layout with SRAFs domain.

• A novel multi-channel heatmap encoding/decoding
scheme is used to map layouts to images suitable for
CGAN training while preserving the layout details.

• Our proposed framework achieves ∼14.6× speed-up
with comparable lithographic performance when com-
pared with state-of-art machine learning based approach
and ∼144× speed-up over the model-based approach
in commercial tool Mentor/Calibre [3] while achieving
comparable results.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then present
the proposed approach in Section III. Section IV presents
numerical results demonstrating the efficacy of our method,
and conclusions are presented in Section V.

II. PROBLEM FORMULATION

The objective of the SRAF generation framework is to insert
SRAFs on any given layout in a manner that mimics the SRAF
scheme generated from model-based techniques. Practically,
the input is a layout clip with target patterns only as shown in
Fig. 1a, and the expected output is a new layout clip similar
to the one shown in Fig. 1b where SRAFs are generated to aid
the printing of target patterns. In other words, the objective is
to train a CGAN to translate images from the target domain,
DTrgt, (Fig. 1a) to the SRAF domain, DSRAF , (Fig. 1b).

In the training phase, each training sample consists of a
pair of images representing the original layout in DTrgt and
its corresponding layout in DSRAF . Based on the training
data, the CGAN model is trained to map images from DTrgt

to DSRAF . Then, the trained model can be used to gener-
ate SRAFs from layouts with target patterns. However, two
challenges should be addressed here. The first is that proper
image encoding/decoding is needed to aid the CGAN training
scheme. Secondly, the generated SRAF scheme may violate
some of the manufacturing rules; hence, a post-processing step
is needed to generate a final layout with SRAFs while abiding
by the specified rules.

To evaluate our proposed SRAF generation method, we
use two metrics to assess the performance of the mask
optimization results: (i) process variation (PV) band and (ii)

(a) (b)

SRAFTarget Pattern

Fig. 1 SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) are
translated to ones with SRAF generated (b) .

edge placement error (EPE). These metrics are defined in a
way analogous to the definitions used in [3].

III. SRAF INSERTION USING CGAN

A. Data Preparation using Heatmap Encoding

As shown in Fig 1, the layouts from both domains DTrgt

and DSRAF can be treated directly as images. However,
this direct image representation is not suitable for the SRAF
generation using CGAN because the expected output cannot
be directly mapped to layout files due to two major limitations.
First, the trained CGAN is not guaranteed to generate ‘clean’
rectangular shapes for the SRAFs. In practice, images gener-
ated from generative adversarial networks (GANs) tend to be
blurry and GANs exhibit inherent limitation in detecting sharp
edges [12]. In addition, and even under the assumption that
the CGAN model can generate sharp-edged rectangles for the
SRAFs, extracting the SRAF information from the image to be
mapped back to the layout file can be prohibitively expensive.
Such mapping requires obtaining both SRAF locations and
sizes from the image generated by the CGAN model. Hence,
the direct image representation similar to that shown is Fig. 1
is ill-equipped for SRAF generation using CGAN.

With this in mind, we propose using a special encoding
scheme, typically used in keypoint estimation [14]–[17], that
can overcome the aforementioned limitations. The proposed
scheme is based on multi-channel heatmaps which associates
each object type with one channel in the image [16], [17].
Specifically, a multi-channel image is a simple representation
where the number of channels is equal to that of the object
types in the problem. On each particular channel, the first step
is to obtain the locations of its corresponding objects in the
original image. Next, a Gaussian noise circle is centered at the
obtained locations on the channel [16], [17].

To elaborate on this, we consider the example shown in Fig.
2 where an original layout is shown in Fig. 2a and the multi-
channel heatmap representation is shown in Fig. 2b. In this
example, we limit the number of channels to 3 to visualize
the encoded representation through a red-green-blue (RGB)
image. These three types are : (i) target patterns (in red), (ii)
horizontal SRAFs (in green) and (ii) vertical SRAFs (in blue).
Similar encoding can be done for images in DTrgt where only
one non-empty channel contains the target patterns.

The representation shown in Fig. 2 has two main ad-
vantages. First, learning sharp edges, which is a hard task
in GANs, is not needed. Instead, training-friendly Guassian
objects are used to encode the objects in the original image.
Secondly, and most importantly, with this representation the
images generated by the CGAN model can be easily mapped
back to layout files. In practice, since each channel represents
a well-defined type of SRAFs, it suffices to detect the location
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Fig. 2 The multi-channel heatmaps encoding process is
demonstrated where (a) shows an original layout representa-
tion and (b) shows the encoded representation.

of excitations in the channel to get the locations of SRAFs of
this particular type in the layout file.

Therefore, prior to the CGAN training step, images in
the training set are all encoded into multi-channel heatmap
representation. In such mapping, the number of channels is
equal to M + 1 where M is the number of SRAF types and
one additional channel is used to encode the target patterns.

B. CGAN Training

In their essence, GANs were proposed as generative models
that learn a mapping from a random noise vector z to output
image y, G : z −→ y [11]. Later, different versions of
GANs, tailored towards specific domain and applications, were
proposed. Among those are the CGANs which, in contrast
with original GANs, learn a mapping from an observed image
x and random noise vector z, to y, G : {x, z} −→ y. As in
the case of most GAN structure, the architecture of a CGAN
is composed of two main components: the generator and the
discriminator. The generator G is trained to produce images
in DSRAF , based on an input image in DTrgt, that cannot be
distinguished from “real” images by an adversarially trained
discriminator, D, which is trained to do as well as possible at
detecting the generator “fakes”. The overview of the training
procedure is described in Fig. 3 [8], [9]. In this work we adopt
the CGAN structure proposed in [9] for the image translation
task.

Mathematically, the loss function used for training the
CGAN can be given as [8], [9]:

LCGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[log (1−D(x,G(x, z)))]

+ λL1Ex,z,y[||y −G(x, z)||1].

(1)

In (1), the first two terms represent the traditional GAN
loss function where G tries to minimize the objective against
an adversarial D that tries to maximize it [8], [9], [11]. The
third term in the equation affects only the generator whose
objective is, not only to fool the discriminator, but also to
generate images close to the ground truth. Here, L1−norm is
used because it encourages less blurring when compared to
L2−norm [9].

Hence, the optimal Generator can be obtained by solving
for the following objective:

G∗ = arg min
G

max
D
LCGAN (G,D). (2)

In practice, experiments shown in [9], [18] have demon-
strated that the noise z is typically ignored by the generator.
Hence, noise is instead introduced through dropout on several
layers of the generator in both the training and inference
stages.

In the next subsections, the details of both the generator and
discriminator used in image to image translation CGAN are

G

D Fake

D Real

Image in 
DTrgt domain

Generated 
image in 

DSRAF domain

Golden image 
in DSRAF
domain

Fig. 3 An overview of the CGAN functionality is shown.

Layer Output
Dimension Channels

Input 256x256 3
Conv1 128x128 64
Conv2 64x64 128
Conv3 32x32 256
Conv4 16x16 512
Conv5 8x8 512
Conv6 4x4 512
Conv7 2x2 512
Conv8 1x1 512

TABLE I The details of the
encoder network in the gener-
ator are presented.

Layer Output
Dimension Channels

Input 256x256 6
Conv1 128x128 64
Conv2 64x64 128
Conv3 32x32 256
Conv4 16x16 512

FC 1 1
TABLE II The details of
the discriminator network
are presented.

shown in addition to the training and inference process. These
implementations are adapted from the deep convolutional
generative adversarial networks framework proposed in [19].

1) Generator: The conventional generator in a GAN is
basically an encoder-decoder scheme where the input is passed
through a series of layers that progressively downsample the
input (i.e, encoding), until a bottleneck layer, at which point
the process is reversed (i.e, decoding) [8], [9], [11], [19]. This
process is shown in Fig. 2a where the gray (white) layers form
the encoder (decoder) respectively.

For image translation tasks using CGAN, a significant
amount of information is shared between the input and the
output, and it would be desirable to shuttle this information
directly across the net without passing through the bottleneck
layer. Towards this goal, skip connections are added following
the general shape of a U-Net [9], [20]. As shown in Fig. 2a,
skip connections are added between each layer i and layer
L − i, by simply concatenating all channels at layer i with
those at layer L− i, where L is the total number of layers.

Table I lists the characteristics of the layers in the encoder
[9]. In all convolutions layers (Conv1-8), (5 × 5) filters are
used with stride 2, and leaky relu is used as an activation
function [8], [9], [19]. On the other hand, the decoder is simply
a mirrored image of the encoder with deconvolutional layers
replacing the convolutional layers.

2) Discriminator: Practically, the discriminator is a convo-
lutional neural network whose objective is to classify “fake”
and “real” images. Hence, its structure differs from that of
the generator. Table II summarizes the different layers of
the discriminator which constitutes of 4 convolutional layers
(Conv1-4) and one fully connected layer (FC) whose output
is the binary classification results [9]. Similar to the generator,
all convolutional filters are of size (5× 5) with stride 2.

3) CGAN Training and Inference: Training a CGAN model
follows the typical procedure used for training GAN with
mini-batch Stochastic Gradient Descent (SGD) and Adam
solver [11], [21]. The training alternates between one gradient
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Fig. 4 Two generator network schemes are shown: (a) shows
the conventional approach while (b) shows the Unet scheme
with skips [9], [20]

descent step on the discriminator, and then one step on the
generator. During inference, the generator net is used in the
same manner as during the training phase. Indeed, the dropout
steps introduced in the layers of the decoder are also used
during the inference time. Moreover, batch normalization is
applied using the statistics of the test batch where a batch size
of 4 is used for the SRAF generation task.

C. CGAN Results Decoding: Heatmap to Layout

The output of the CGAN for SRAF generation is a layout
image in a multi-channel heatmap representation as in the
example of Fig. 2b. Hence, a decoding step is required to
extract the SRAF information from the encoded image. Here, it
is important to note that the choice of the encoding scheme was
made with this SRAF extraction task in mind. The objective
of this step is to extract both the types (i.e, sizes) and locations
of the SRAF to be generated on the layout. As described in
Section III-A, the SRAF scheme in encoded such that each
channel of the image contains one type of SRAFs. Hence, for
each channel, it suffices to get the locations of excitations on
the heatmap to get locations of the SRAFs of a particular type.
Therefore, the task reduces to detecting the excitations on each
channel.

Towards the goal of parsing the heatmap, we start from
conventional methods used in parsing heatmaps in the field
of keypoint estimation [14], then tailor these methods to the
SRAF generation task at hand. Knowing that the encoding
scheme uses a Gaussian circle centered at each keypoint
location, it is expected that the exact SRAF location possess
the highest magnitude compared to its neighbors. Therefore,
on each channel, a fixed size window is swept over all non-
zero pixels on the map where the value of the center pixel is
compared to that of all other pixels in the window. The center
pixel is considered an SRAF location only if it possess the
highest magnitude among all pixels in the window. This step
constitutes the core of the decoding procedure. In addition,
two filtering stages are used to reduce the effect of noise and
false alarms.

In the first step, and before performing the window sweep-
ing operation, the image generated from the CGAN is passed
through a filtering stage with a fixed threshold that sets all
pixels with values below the threshold to zero. This step helps
reduce the effect of noise present in the generated image.
On the other hand, a checking step accompanies the core
window screening step mentioned above to discard isolated
pixels. In other words, if a single pixel in a window has a
non-zero value, it is more likely a noise pixel than a legit
SRAF location. This is mainly because SRAF locations are
expected to be encoded through a Gaussian circle, not a single

pixel excitation. When the center pixel in a window possess
the highest value compared to other pixels, the number of its
immediate non-zero neighbors is examined. If a majority of
the neighboring pixels are non-zeros, the pixel is considered a
legitimate SRAF; otherwise, the pixel is considered an isolated
pixel and hence a false alarm.

Algorithm 1 CGAN Results Decoding

Require: An image I with dimensions (N×N×M), a widow
size w, ε1 and ε2

1: Initialize {Ωm ← ∅ : m = 1, 2, . . . ,M}
2: Set all pixels less than ε1 in I to 0
3: for m = 1, 2, . . . ,M do
4: for i = w,w + 1, . . . , N − w do
5: for j = w,w + 1, . . . , N − w do
6: if Ii,j,m > 0 and nnz(Ii∓1,j∓1,m) > ε2 then
7: if Ii,j,m = max Ii∓w,j∓w,m then
8: Ωm ← Ωm ∪ (i, j)
9: end if

10: end if
11: end for
12: end for
13: end for
14: return {Ωm : m = 1, 2, . . . ,M}.

The decoding scheme is summarized in Algorithm 1. The
input is a multi-channel heatmap encoded image I generated
from the CGAN model with the channel carrying the target
pattern dropped. Algorithm 1 also requires the size of the
scanning window as an input in addition to the two threshold
values ε1 and ε2 that are used for the filtering stage and the
neighborhood check respectively. As a first step, thresholding
is done using ε1 (line 2). Next, for each channel in the image,
all pixels are scanned, and at each location three conditions
are checked: (i) if the value of the pixel is nonzero, (ii) if the
number of its non-zero (nnz) neighbors is greater than ε2 (line
6) and if its value is the maximum in the window (line 7). If all
three conditions are satisfied at a particular (i, j,m) location,
the coordinates (i, j) are added to Ωm. The Algorithm returns
the sets {Ωm : m = 1, . . . ,M}, where each set Ωm contains
the locations of SRAFs of type m. These sets contain all
necessary information to generate a layout clip similar to the
one in Fig. 2a. In practice, Algorithm 1 can be significantly
accelerated with massive parallelization, since each pixel can
be checked independently. Therefore, we develop a custom
CUDA accelerator for this process and integrate it to GAN-
SRAF.

D. Post Processing

The decoding procedure in Algorithm 1 generates a properly
formatted layout clip. However, this clip is not guaranteed
to follow all SRAF manufacturing rules such as minimum
spacing [3]. Hence, a final legalization step is employed to
ensure that all design rules are satisfied. In this work, we
adopt the same greedy simplification scheme proposed in [3]
to accommodate the mask manufacturing rules.

IV. EXPERIMENTAL RESULTS

A. Data Description and CGAN Training

To train the CGAN model, a training dataset containing
1620 layout clips is used. From each clip, two images are
created using the multi-channel heatmap encoding presented
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Fig. 5 The distribution of SRAF sizes in the dataset is shown.
Parameter Learning

rate βADAM # of epochs Batch size λL1

in (1)
value 0.0002 0.5 100 4 100

TABLE III A summary of CGAN training parameters is
shown.

in Section III-A. The first image is in DT , where only target
patterns are present, while the second is in DS where both
target patterns and SRAFs are present. The SRAFs in the
layout clips are generated using model-based SRAF generation
in Mentor/Calibre with the same setup as [3] and are consid-
ered the golden solution when training the CGAN model. This
setup corresponds to memory design and is used for contact
generation. In practice, it matches closely intels 14nm process
(for P1272-CPU) with minimum spacing and minimum width
for contacts set to 70nm (pitch=140nm).

It is shown in Fig. 5 that a few SRAF shapes have
significantly higher frequency than the remaining ones. In fact,
SRAFs with sizes (0.04, 0.09), (0.09, 0.04), and (0.04, 0.04)
are evidently dominant. Therefore, assigning a separate chan-
nel to encode each of the total 101 unique shapes will be too
expensive and of small return. Hence, it makes more sense to
map all shapes to a small set of categories based on the most
dominant ones. By examining the distribution in Fig. 5, three
major categories can be intuitively obtained based on the three
dominant shapes.

However, keeping in mind that the target contact will occupy
one channel in the image, we desire to restrict the SRAF
types to two for the evident reason that a 3-channel image can
be easily visualized. In fact, we observe that even with only
(0.04, 0.09) and (0.09, 0.04) SRAF shapes, the final SRAF
solutions after post-processing could still contain SRAFs of
size (0.04, 0.04) to satisfy the mask constraints. Hence, we
choose to map SRAFs in the layout clips to two types (shapes)
only: (i) (0.09, 0.04) and (ii) (0.04, 0.09). All other shapes are
mapped to one of these values based on their similarity. For the
square patterns, they are mapped to one of the two categories
randomly. In total, three channels are used to encode each
clip in the given dataset where one channel is used to encode
target patterns and the other two represent the two types of
SRAFs. However, note that the proposed approach is general,
and the number of channels to be used can be set by the user
depending on the data. With the prepared dataset, CGAN is
trained with the setup in Table III.

B. SRAF Generation

To demonstrate the efficacy of our proposed approach, we
compare the layouts generated from our proposed approach
(denoted CGAN) with (i) those obtained from the local
sampling scheme approach presented in [3] where Support
Vector Machine is used as the classification model (denoted
LS SVM) and (ii) those obtained from model-based SRAF
generation (denoted MB). For comparison, a separate testing
dataset with 404 clips is used. The performance of the three
different methods, under the same setup, can be visualized

No SRAF MB LS SVM [3] CGAN
PV band (*0.001 um2) 3.354 2.845 3.009 2.916

EPE (nm) 3.9287 0.5270 0.50669 0.5410
Runtime (s) - 6910 700 48

TABLE IV The comparison of evaluation metrics and run
time across different SRAF generation schemes is shown.

in Fig. 6 which shows the result for SRAF generation using
MB (Fig. 6a), CGAN (Fig. 6b), and LS SVM (Fig. 6c) for
two layout clips in the testing dataset. For both CGAN and
LS SVM the “prediction” label denotes the results of SRAF
generation prior to the post processing step described in III-D.
Particularly, for the case of CGAN, these predictions are the
results of Algorithm 1. The final legal layout scheme after post
processing is labeled “Final”.

By examining the results in Fig. 6, and recalling that
both CGAN and LS SVM are trained against the model-
based SRAF results as the golden solution, one can easily
conclude that the “predicted” SRAFs from CGAN mimic the
MB results much better than the “predicted” SRAFs from
LS SVM. Moreover, comparing the “Final” SRAFs obtained
from CGAN and the MB results shows that, although the two
do not match exactly, the CGAN has captured the systematic
way of generating the SRAFs in a model-based approach. In
addition, one can notice a relatively small difference between
the predicted SRAFs and final SRAFs for the case of CGAN
when compared to those of LV SVM. This is due to the fact
that the CGAN generated SRAF scheme is very close to the
legal layout; hence, minimal changes are needed in the post
processing stage. On the other hand, LS SVM generates a clip
of clustered SRAFs which requires intensive post-processing
before obtaining a legal layout.

C. Lithography Compliance Check and Run Time

To quantify the quality of our proposed approach, we inte-
grate the SRAF generation with a complete mask optimization
flow using Mentor Calibre. The three different generation
schemes are compared in terms of PV band and EPE. For
each contact, the PV band value is measured, and the EPE
value at the center of the edges at nominal conditions is
considered. Table IV summarizes the the mean absolute values
of the two metrics. The table also includes the PV band and
EPE evaluations with no SRAFs to better demonstrate the
performance gain achieved through SRAF. In practice, the
most important metric of evaluation is the PV band (smaller
is better) [3], and as demonstrated by the results, CGAN
can achieve better PV band when compared to LS SVM
[3] which demonstrates a superior performance in terms of
SRAF insertion quality. This is in fact consistent with our
observation in Section IV-B where SRAF schemes generated
from CGAN can better mimic the MB generated schemes.
Hence, the PV band obtained from CGAN is closer to that of
MB. On the other hand, despite that fact that LS SVM can
achieve better results in terms of EPE, EPE can be further
improved with better OPC [22]; hence, it is not the best
metric used to judge upon the quality of SRAF generation
[3]. In general, the three SRAF generation schemes -MB,
LS SVM, and CGAN- achieve comparable results in terms
of lithography evaluation metrics with CGAN demonstrating
suporior results compared to LS SVM. This can be better seen
when examining the histograms in Figs. 7 and 8 showing the
distribution of EPE and PV band respectively across all clips
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MB SRAFTarget Pattern LS_SVM Final

CGAN FinalLS_SVM Prediction CGAN Prediction

Fig. 6 The results of SRAF generation for two clips in the test
data using MB (a), CGAN (b) and LS SVM (c) are shown.
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Fig. 7 The comparison of EPE distribution across different
SRAF generation schemes is shown.

in the testing dataset. The figures clearly show that the CGAN
performance is comparable to that of LS SVM and MB.

Most importantly, considering the runtime of generating
SRAFs for all clips in Table IV, CGAN can achieve ∼14.6×
runtime reduction when compared to LS SVM while achiev-
ing better PV band, and ∼144× when compared to model
based approach while achieving comparable results.

V. CONCLUSION

In this paper, a novel SRAF generation framework, GAN-
SRAF, is presented based on conditional generative adver-
sarial neural networks. We propose an effective encoding
scheme to represent the layout information using a multi-
channel heatmaps and a GPU-accelerated decoding scheme

0.0020 0.0025 0.0030 0.0035 0.0040
0

1000

2000

3000

MB CGAN LS SVM NO SRAF

Fig. 8 The comparison of PV band distribution across
different SRAF generation schemes is shown.

for extraction of SRAF solutions. The experimental results
demonstrate that GAN-SRAF achieves ∼14.6× reduction in
computational cost compared to state-of-art machine learning
SRAF generation approaches, and ∼144× when compared to
model-based approach, while achieving comparable quality.
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