
MAGICAL: Toward Fully Automated Analog IC
Layout Leveraging Human and Machine Intelligence

(Invited Paper)

Biying Xu, Keren Zhu, Mingjie Liu, Yibo Lin, Shaolan Li, Xiyuan Tang, Nan Sun, and David Z. Pan
ECE Department, The University of Texas at Austin, Austin, Texas, USA

{biying, keren.zhu, jay liu, yibolin, slliandy, xitang}@utexas.edu, nansun@mail.utexas.edu, dpan@ece.utexas.edu

Abstract—Despite tremendous advancement of digital IC de-
sign automation tools over the last few decades, analog IC
layout is still heavily manual which is very tedious and error-
prone. This paper will first review the history, challenges,
and current status of analog IC layout automation. Then, we
will present MAGICAL, a human-intelligence inspired, fully-
automated analog IC layout system currently being developed
under the DARPA IDEA program. It starts from an unannotated
netlist, performs automatic layout constraint extraction and
device generation, then performs placement and post-placement
optimization, followed by routing to obtain the final GDSII layout.
Various analytical, heuristic, and machine learning algorithms
will be discussed. MAGICAL has obtained promising preliminary
results. We will conclude the paper with further discussions on
challenges and future directions for fully-automated analog IC
layout.

I. INTRODUCTION

The demand for analog integrated circuits (ICs) has been
increasing in many emerging applications, including Internet
of Things (IoT), 5G networks, advanced computing, healthcare
electronics, etc., which necessitates a shorter design cycle of
analog ICs. Despite the tremendous advancement of digital
IC layout design automation tools, analog IC layout is still a
heavily manual, time-consuming, and error-prone task, due to
its high design flexibility and significant impact on the circuit
performance.

Early endeavors of analog IC layout automation, including
ILAC [1], KOAN/ANAGRAM II [2], LAYLA [3], applied
simulated annealing to optimize the layout. More recent works
[4]–[6] improved the analog layout constraint handling and
the design space pruning. Algorithmic revolution on placement
[7]–[13] and routing [14]–[17] further enhanced the scalability,
efficiency, and design considerations specific to analog IC
layouts. Nonetheless, existing analog layout tools usually
require human designers to prepare very detailed constraints
as inputs, which could be a tedious practice. Meanwhile,
the poor accessibility of most tools prohibits testing and
improvement from the circuit designers’ side. The acceptance
of the automated analog IC layout tools has thus been limited.

Recently, DARPA announced the IDEA program, with the
mission to create a “no human in the loop” 24-hour turnaround
circuit layout generator. The program is expected to spur
the development of state-of-the-art IC design flows that are
easier to use and more readily available. As part of the

program efforts, we present our work MAGICAL, a fully
automated analog IC layout system leveraging human and
machine intelligence inherently. The main contributions are
summarized as follows:

• MAGICAL is a fully automated, end-to-end analog IC
layout system that generates a completed layout from a
circuit netlist. The source code1 is released on GitHub.

• Designer insights and expertise are strategically embed-
ded into MAGICAL through pattern matching, heuristic,
and deep learning techniques.

• The layouts completed by MAGICAL are validated us-
ing industrial standard verification tools, demonstrating
circuit performances close to those handcrafted by expe-
rienced designers.

II. MAGICAL DESIGN FLOW

The overall flow of MAGICAL is shown in Fig. 1. It takes
an unannotated circuit netlist and design rules as inputs, and
produces a complete GDSII layout as output fully automat-
ically without human designers in the loop. The entire flow
consists of four major modules: automatically layout constraint
extractor, parametric device generator, analytical analog placer
with post-placement optimization, and analog router. The
design rules and the extracted layout constraints are honored
throughout the entire back-end flow. All the completed layout
results are validated and evaluated by industrial standard tools.
In the subsequent sections, the major tasks of the MAGICAL
analog layout generation tool will be elaborated.

III. PARAMETRIC DEVICE GENERATION

Before running the core layout flow, the device generation
step first generates the GDSII layout of the devices and extracts
their pins to facilitate the subsequent placement and routing
stages. The inputs to device generation are instance parameters
and process technology-dependent design rules. The generated
GDSII layout are correct by construction based on the design
rules.

MAGICAL supports different device types, including
PMOS, NMOS, MOM capacitors, and poly resisters. Transis-
tors can have additional attributes such as lvt (low threshold
voltage), hvt (high threshold voltage) and na (native device).

1https://github.com/magical-eda/MAGICAL

978-1-7281-2350-9/19/$31.00 ©2019 IEEE



MAGICAL
INPUTS

Circuit Netlist

Design Rules

DEVICE 
GENERATOR

Parametric 
Instances

PLACER

Analytical Placement

ROUTER

Multi-pin 
A* Search

Post-Placement 
Optimization

VALIDATION
&

EVALUATION 

MAGICAL
OUTPUT

GDSII Layout

MAGICAL
LAYOUT CONSTRAINT EXTRACTOR

Pattern Matching + 
Small Signal Analysis

Fig. 1. Overall flow of MAGICAL analog layout system.

The automatic parametric device generation considers the
number of fingers for transistors, the number of segments
for resistors, the metal layers for Metal-Oxide-Metal (MOM)
capacitors, etc. Fig. 2 shows examples of the layouts of
different types of devices generated by MAGICAL.

Pin information of the devices is extracted in this step. The
pin shape with the minimal area is selected as the drain of a
transistor to reduce drain parasitic capacitance. Lower metal
layer shapes connected to the terminals of the devices are
selected as the pins used for routing.

(a) (b) (c) (d)

Fig. 2. Examples of generated devices from MAGICAL. (a) NMOS, (b)
PMOS with guard ring, (c) MOM capacitor, and (d) poly resistor.

IV. ANALOG LAYOUT CONSTRAINT EXTRACTION

The layout constraint extractor takes circuit netlist as input
and generates constraints to guide the later stages. Sym-
metry constraints are one of the most essential and widely
adopted constraints applied during analog layout synthesis.
Analog designs frequently use differential topologies to re-
ject common-mode noise and enhance circuit robustness and
performance [18]. Mismatch of sensitive devices in the layouts
often cause performance degradation to offset and common-
mode rejection ratio (CMRR) [19]. Thus correctly identifying
symmetry constraints between sensitive devices are crucial for
ensuring the quality of placement and routing.

The constraint extraction reads in the input netlist and gener-
ates constraints for placement and routing based on the circuit
connections. A significant challenge for constraint extraction is
in generating high-quality constraints and resolving constraint

(a)

(b) (c)

Fig. 3. Layout constraint extraction illustration. (a) Pattern library, (b) bias
circuit symmetry detection, and (c) signal flow based traversal.

ambiguity. The automated placement and routing symmetry
constraint extraction mainly consist of four stages listed below.

A. Graph Abstraction

Our constraint extraction is based on analysis of the graph
abstracted from the circuit netlist. Firstly, the netlist file is
parsed, and the circuit is abstracted into a graph represen-
tation. Since the pin connection information is crucial to
the topological structure of analog circuits, we preserve pin
information during the abstraction. Devices, pins, and nets are
all represented as nodes. Pins are connected to the device they
belong to. Nets connect to pins based on the circuit netlist



connections. Nets are never directly connected to devices in
our graph representation since they alway connect to pins first.

B. Seed Pattern Detection
Transistor pairs that form certain structural patterns are

detected as seed symmetric device pairs. These seed patterns
are the starting or ending points for graph traversal in the next
stage. Seed patterns are those in the pattern library where the
source of the transistor pins are connected. Instead of using
expensive graph isomorphism algorithms [20]–[23], we check
the connection relationships and device attributes between the
pairs of devices for matching. As an example, for recognizing
differential pairs, we iterate all pairs of transistors connected
to the same net through source pins and check if the gate
pins are connected to different nets and the device attributes
match. To better resolve constraint ambiguity, especially where
digital circuits are extensively used in mixed-signal designs,
we recognize differential pairs as seed patterns only if the
connected source net is the virtual ground node (not power or
ground nets).

C. Signal Flow Based Graph Traversal
We traverse the graph from the seed symmetric device

pairs while recognizing new constraint patterns. This step is
analogous to following the differential current in small-signal
analysis [18]. Graph traversal not only expands the recognized
constraints but also helps with reducing constraint ambiguity
since the graph connections with other patterns guide the
pattern matching process. Matching between passive device
elements are also considered. For each pattern, we define
current directions to guide the graph traversal process. As an
example, if a cascode transistor pair pattern is reached through
the source pins, the nets to proceed with graph traversal
are the nets connected to the drain pins. Graph traversal
ends when the two flow paths meet at the source connected
transistors such as other seed patterns, or connected passive
device elements. The visited symmetric transistor patterns
from the same seed pattern during graph traversal form a
symmetric group which would share the same symmetry axis
in the placement. Nets connecting symmetric device pairs are
recognized as symmetric nets.

D. Constraints Post-processing
In the last step, we post-process the symmetric groups

and recognize additional symmetry constraints, including self-
symmetric devices connected to virtual ground nodes and
symmetric transistor pairs in the bias circuits. Virtual ground
and certain clock nets are identified as self-symmetric nets.
Bias circuit symmetry is detected by checking common-
gate connected transistors and searching for diode-connected
transistors. Additional symmetry constraints in the bias circuits
are detected in this step. Since it may not be feasible to
satisfy all the extracted constraints in the placement stage,
to guarantee feasibility, we currently only allow a device have
at most one symmetry constraint. More advanced matching-
oriented constraints such as regularity and common-centroid
would be supported in future versions of MAGICAL.

Fig. 3 shows the library of some transistor patterns, detec-
tion of bias circuit symmetry, and an example of signal flow
based graph traversal for constraint extraction.

V. ANALOG PLACEMENT

Given the placement constraints and devices generated in
the previous steps, we develop an analog placement en-
gine. The inputs to the placer include the circuit netlist, ex-
tracted constraints, generated devices, and process technology-
dependent design rules. The outputs are the legalized GDSII
layout of the placement result and pin information for routing.
Besides symmetric group constraints, it also supports net
criticality constraints if specified, by minimizing the weighted
net lengths according to the its criticality. The placement
engine consists of a core placement stage and a post-placement
optimization stage.

A. Placement Algorithm

The core placer follows an analytical framework as in [24].
First, the global placement simultaneously optimizes multi-
ple objectives in a non-linear objective function. Then, the
legalization step generates a legal placement solution honoring
the global placement result while satisfying the symmetry
constraints and design rules. Finally, a linear programming
(LP) based detailed placement is used to further optimize the
wirelength.

1) Global Placement: Our global placement is similar to
the non-linear global placement algorithms as in [13], [25],
which simultaneously considers the following: (1) wirelength,
(2) device overlapping, (3) placement boundary, and (4) sym-
metry constraints from the constraint extraction stage. To be
specific, it minimizes the objective shown in Equation (1)
using unconstrained non-linear conjugate gradient method.

Objective = fWL + a · fOL + b · fBND + c · fSYM . (1)

where:
• fWL is the wirelength objective, which is defined as the

total half-perimeter wirelength (HPWL).
• fOL is the overlap penalty, which is modeled as an area

overlap function similar to [26].
• fBND is the penalty of violating the boundary con-

straints. To control the circuit area, white space ratio,
and aspect ratio, a desirable placement bounding box for
the design is derived.

• The last term fSYM penalizes the violation of symmetry
constraint, which requires: (1) each symmetric device pair
within the same group to be symmetric with respect to
the same axis; (2) the self-symmetric devices to be self-
symmetric with respect to the same axis of the group.

• a, b, and c are the coefficients to realize the trade-off
between different objective terms.

Log-sum-exponential (LSE) models [27] are used to smooth
the max and min functions in the objective. Our non-linear
optimization-based global placement runs iteratively, until all
the penalties are below the specified thresholds, or the prede-
fined maximum number of iterations is reached. By gradually



adjusting the coefficient values a, b, and c of different penalty
functions in each iteration, we can get a global placement
result encouraging symmetry and boundary constraints with
short wirelength and small device overlapping.

2) Legalization and Detailed Placement: After global
placement, we perform a legalization step to get a place-
ment free from device overlapping, design rule violation, and
symmetry constraint violation. During this step, we develop
algorithms to construct the constraint graphs, and legalize the
global placement result using LP-based compaction given the
constructed constraint graphs.

Our constraint graph construction algorithm is based on
the plane sweep algorithm presented in [28]. This algorithm
encounters problems when the global placement result has
overlaps between devices, which may over-constrain the legal-
ization and result in a sub-optimal area. To get a more compact
placement after legalization, we will remove the excessive
constraint edges between each pair of overlapping devices
by determining their relative positions greedily, i.e., to spread
them in the direction that would induce less displacement. We
will only keep the constraint edge corresponding to the chosen
spreading direction, while other edges between them will be
removed.

Nevertheless, there may be missing positional constraints
in the constraint graphs obtained. A depth-first-search (DFS)
based algorithm is developed in order to detect those missing
positional constraint edges. Readers are referred to [24] for
the detailed implementation. If both horizontal and vertical
positional constraints are missing according to the DFS-based
algorithm, we will add one edge to either the vertical or
horizontal constraint graph greedily. To be specific, if the
vertical spacing is larger than the horizontal spacing between
the two devices in the global placement solution, we will
add an edge to the vertical constraint graph. The horizontal
constraint edges can be added similarly. We will also perform
transitive reduction on both horizontal and vertical constraint
graphs to remove the transitive edges.

After constructing the constraint graphs, we can get a legal
compact placement solution using LP in accordance with the
constraint graphs. There are two sets of constraints which
are topology order (non-overlap) and symmetry constraints.
The topology order constraints are from the constraint graphs
obtained, while the symmetry constraints are from the layout
constraint extraction stage.

Finally, we will perform LP-based detailed placement to
further optimize the wirelength for the given legal placement.
Symmetric group constraints and design rules are also honored
during this step.

B. Post-Placement Optimization

After the device locations are determined in the placement
stage, the post-placement step generates the well islands, and
establishes the bulk and substrate connection pins for routing.

Our well island generation supports different approaches.
The polygon-based approach follows WellGAN [29], a deep
neural network-guided well generation framework. A trained

generative adversarial network (GAN) model provides the
guidance of the well island shapes, and a refinement step
is performed to legalize the layout result given the GAN
guidance. In general, this approach may generate more com-
pact layout designs. However, legalizing the polygonal well
islands can be challenging, and it may degrade the post-layout
circuit performance due to layout-dependent effects if handled
improperly, especially in advanced process technology nodes.

In face of the challenges posed by the polygon-based
well generation approach, MAGICAL also supports generating
rectangular well islands for each individual devices with wells.
This approach can overcome the legalization difficulty and per-
formance effects of WellGAN, at the cost of slightly increased
total area and routing complexity. In fact, for high-performance
analog designs, circuit performance is often considered more
important than the total area. Moreover, the number of nets in
an analog circuit is usually relatively few compared with the
layout area. Hence, routability is generally not a critical issue
for analog circuit layouts. From this perspectives, generating
individual wells for certain devices could also be a desirable
practice.

After well generation, MAGICAL will automatically es-
tablish the well island and substrate connection points. Both
guard rings and contacts are supported and can be inserted
free from design rule violation by construction. After that,
we will legalize and spread out the well islands with the
consideration of design rules. Finally, the placement result in
GDSII format as well as the pins of the devices, well islands,
and the substrate will be output for routing.

VI. ANALOG ROUTING

After the placement and post-placement optimization stage,
an end-to-end router connects all the pins with metal wires
in aware of the analog circuit-specific constraints and design
consideration.

In addition to connectivity and design rules, analog routing
problem is also imposed with symmetric net constraints for
matching [30]. In MAGICAL, the routing engine takes inputs
from the layout constraint generator and honors the symmetric
and self-symmetric constraints for nets. Out analog routing
consists of two stages, global and detailed routing, similar
to the conventional digital routing flow. In the global routing
stage, the design is divided into rough grids, and the topology
of routing is generated. The purpose of global routing is to
efficiently find a global routing solution without extensively
spending computational resources in the detailed design rule
and congestion resolving. While in the detailed routing stage,
the physical geometry of metal wires are implemented fol-
lowing the global routing guide, symmetric constraints, and
design rules.

A. Global Routing

A sequential symmetry-aware grid-based A* search routing
engine is employed in global routing stage.

Before performing the routing, several steps are executed
on the input placement solution and the process technology



information. The placement is firstly divided into grid cells
unified in size. By default, MAGICAL decides on the width
and height of each grid cell based on track width on M1
layer. To be specific, the global routing will attempt to divide
the layout into 3D grid so that the width and height of
each grid cell are four-track widths. However, as computation
efficiency is low when the number of grid cells is relatively
large, MAGICAL limits the amount of grid cells to be below
200 × 200 × Nlayers, where Nlayers denotes the number of
layers. After generating the routing grid, routing capacity is
calculated on 2D grid edges based on the actual grid cell width
and track width.

Besides the global routing grid, the input pins are pre-
processed before routing. Unlike cell-based digital physical
design flow, customized analog circuit devices do not have
an identical convention of pins such as layer and shape. Pin
shapes could be polygons varied in size and shape, depending
on the device type and parameters. In MAGICAL routing
engine, the pins are decomposed into searching points in the
path search scheme. The polygon is firstly separated into
rectangles. The intersection points between the center lines
of the resulting rectangles and the tracks of the metal layer
above are identified as the search points. If no search point
is identified based on the strategy above, the center points of
the rectangles are considered as the search points in the A*
search algorithm.

After processing the input placement, every multi-pin net is
split into two-pin nets based on minimum spanning tree with
HPWL as the edge costs. The two-pin net splitting is matched
for symmetric net pairs so that the symmetry is maintained.
Then symmetric net pairs and self-symmetric nets are routed
on the 3D global routing grid with exact symmetry along the
symmetric axis. A rip-up and reroute scheme is applied when
failing to achieve a feasible solution in the early iterations.

B. Detailed Routing

After determining the rough routing topology in the global
routing stage, detailed routing engine completes the routing
and assigns metal wire geometries to each net. Similar to
the global routing, a sequential A* search kernel is applied.
However, instead of routing abstract nets on the rough global
routing grid, detailed router explicitly handles design rules in
physical layouts.

Since the input pins and previously generated search points
are not necessarily aligned with the routing tracks, the detailed
analog routing engine does not restrict the wire segments
and VIAs to be exactly aligned with routing tracks as its
digital counterpart. Instead, they only need to align to the
manufacturing grid specified in the process technology design
rules. The detailed router will attempt to search for the path
for the nets on multiple layers with default search step of track
width. The design rules of metal wires and VIAs are checked
during the A* search. When routing the symmetric net pairs
or self-symmetric nets, both the two sides are routed at the
same time. Therefore the resulting routing solution is feasible
for both sides of the symmetric axis.

After the detailed routing stage, a complete placed and
routed layout is generated fully automatically, and a GDSII
format layout file is exported.

Due to the complexity of analog routing, other analog
circuit-specific routing considerations will also be incorporated
into MAGICAL to improve the post-layout circuit perfor-
mance. The preliminary results in GeniusRoute [31] demon-
strate the effectiveness of our neural network guided analog
routing techniques.

VII. EXPERIMENTAL RESULTS

The MAGICAL flow is implemented in Python and C/C++,
and the experiments are performed on a Linux server with an
8-core 3.4GHz Intel(R) CPU and 32GB memory. The layout
results are validated using Calibre DRC/LVS/PEX, and eval-
uated using Cadence Virtuoso ADE simulation environment.

TABLE I
RESULTS OF THE COMPARATOR CIRCUIT (COMP).

Metrics Output
Delay (ps)

Input-referred
Noise (µVrms)

Power
(µW)

Input-referred
Offset (mV)

Manual 150 380 16.8 0.15
MAGICAL 152 334 18.7 0.50

TABLE II
RESULTS OF THE MILLER-COMPENSATED OTA (OTA1).

Metrics Gain
(dB)

UGB
(MHz)

PM
(degree)

Noise
(µVrms)

CMRR
(dB)

Offset
(mV)

Manual 37.7 110.0 67.8 219.0 103.0 0.20
MAGICAL 38.0 107.5 62.3 221.5 92.5 0.48

TABLE III
RESULTS OF THE FEED-FORWARD COMPENSATED OTA (OTA2).

Metrics Gain
(dB)

UGB
(MHz)

PM
(degree)

CMRR
(dB)

Offset
(mV)

Manual 35.3 2200 77.6 126.1 <0.01
MAGICAL 35.3 2200 77.9 88.9 0.161

TABLE IV
RESULTS OF THE INVERTER-BASED OTA (OTA3).

Metrics Gain
(dB)

UGB
(MHz)

PM
(degree)

CMRR
(dB)

Offset
(mV)

Manual 69 1300 58 94.5 0.016
MAGICAL 69 1130 56.5 110 0.001

The circuit performances of the layout results generated
by MAGICAL are compared against tape-out quality manual
layouts by experienced analog IC designers, under the same
test bench suites. The post-layout simulation results for 3
benchmark circuits, a comparator (COMP), a 2-stage miller-
compensated operational transconductance amplifier (OTA1),
a 2-stage feed-forward compensated OTA (OTA2), and an
inverter-based OTA (OTA3), are shown in Table I, II, III,
and IV, respectively, where UGB means unity-gain bandwidth,
PM refers to phase margin, and CMRR is common-mode
rejection ratio. The results demonstrate that MAGICAL can
automatically generate validated layouts from unannotated



(a) circuit schematic

(b) manual layout (c) layout from MAGICAL

Fig. 4. Comparator circuit schematic, manual layout, and layout result from
MAGICAL.

circuit netlist (supporting both Spectre and HSPICE format),
and the post-layout performances are close to the manual
designs by experienced designers. Some performance metrics
including input-referred offset and CMRR could be further
improved by extensively considering layout dependent effects,
minimizing coupling to sensitive nets, etc. Figures 4, 5, 6, and
7 show the circuit schematics, the handcrafted layouts, and
the layout results by MAGICAL of the benchmark circuits.
Note that some device parameters of the manual layout may
not necessary match the schematic after adjustment by layout
designers, e.g., number of fingers for transistors, while MAGI-
CAL generates the device layouts corresponding to the circuit
netlist. Therefore, the devices in the manual layout may appear
to be different from those generated by MAGICAL.

TABLE V
RUNTIME OF MAGICAL.

Circuit COMP OTA1 OTA2 OTA3
Runtime (s) 3.91 10.51 6.03 26.6

Table V shows the runtime for the full MAGICAL flow. As
shown in the table, it can generate the complete routed layout
in seconds, while manual layouts usually take hours. The fast
turn-around time could significantly shorten the design cycle
and facilitate the design closure.

VIII. FUTURE DIRECTIONS

Future directions of MAGICAL include the followings.
1) Interaction with Open-Sourced EDA Ecosystem: En-

couraged by the DARPA IDEA/POSH program, a number
of open-source projects have emerged recently [32]–[34].

VDD

VBP

VBNVBN VBNCMFB

VIP VIN

VOP VON

VDD

VBN

VBP

IBIAS

VDD

VCM
VOPVON

VBP VBP

CMFB

Gain PathBias Common-mode Feedback

(a) circuit schematic

(b) manual layout

(c) layout from MAGICAL

Fig. 5. Miller-compensated OTA circuit schematic, manual layout, and layout
result from MAGICAL.

Being part of the open hardware/EDA ecosystem, the future
development of the MAGICAL will both benefit from and
contribute to the community.

MGICAL can learn from the recent emerging open-source
EDA tools. Both AMS and digital layout automation flows
share many common infrastructural components with MAGI-
CAL, e.g., OpenROAD [33] which aims to build a completely
open-source digital physical design flow and ALIGN [34]
which is another AMS layout generator. Although the ex-
isting components in different open-source EDA tools may
have different algorithms and methodologies, there are some
overlapping between their functionality. For example, ALIGN,
RAIL [35], and MAGICAL all contain modules for generating
the device layouts. Similarly, ALIGN, TritonRoute [36], DR.
CU [37], and MAGICAL all provide different implementations
of detailed router. It would be beneficial for the community
to leverage some well-established efforts from each other and
focus on the key differentiation. Besides the physical design
framework, there are also open-source utilities that could
be valuable for applying in MAGICAL. For instance, Cpp-
taskflow [38] can potentially be applied in MAGICAL for
improving efficiency by parallelizing the algorithm, and circuit
sanitizer [39] would make sharing designs easier among the
community by avoiding disclosing process design kit (PDK)
related information.

Besides the EDA tools, open-sourcing AMS circuit designs
is another driving force for AMS layout automation. On one
hand, lacking of training data has been a major challenge in



VDD

VBP

IBIAS

Bias

CMFB

VDD

VBP

VCM VCMO

Common-mode Feedback

VDD

VIN

VBP

VIP

OP1 ON1
VOPVON

VCMO

VDD

VIN

CMFB

VBP

VIP

ON1 OP1

Gain Path

VCAS

(a) circuit schematic

(b) manual layout (c) layout from MAGICAL

Fig. 6. Feed-foward compensated OTA circuit schematic, manual layout, and
layout result from MAGICAL.

machine learning-based EDA algorithm, e.g., [29], [31]. On
the other hand, the lack of a unified test circuit benchmark
suite makes it difficult to evaluate and compare different
AMS EDA tools. Recently, both MAGICAL and the other
DARPA IDEA/POSH teams have released a number of PDK
information stripped state-of-the-art AMS designs, including
state-of-the-art SAR ADCs [40], ∆Σ ADCs [41], [42], VCO-
based ADCs [43], [44], and temperature sensors [45], [46], etc.
Open-source designs not only make it possible for the EDA
tools to have common evaluation metrics, but also provide
training data for machine learning-basd EDA algorithms.

2) Performance-aware Layout Constraint Generation,
Place and Route (P&R) Flow: While MAGICAL has
demonstrated satisfactory results, it currently only minimizes
post-layout circuit performance degradation implicitly by
considering the analog layout constraints. Approaches for
directly optimizing circuit performance still need to be
integrated into the current flow. In the future research
and development, MAGICAL will investigate into the
performance-aware techniques, especially machine learning
algorithms, throughout its entire flow. As an example,
in addition to the component-level symmetry constraint
generation, MAGICAL will try to extract net criticality
constraints and system-level symmetry from the netlists.
On the other hand, with the recent advancement in neural
network-guided physical design algorithms including [31],
MAGICAL will further leverage human and machine
intelligence in the P&R flow.

3) System-level Hierarchical Layout Optimization: Modern
mixed-signal circuits, such as data converters, are hierarchical

Bias

IBIAS

VCM

VDD

NTAIL
N2TAIL

VDD

CMFB VCM

NTAIL

Common-mode Feedback

PBCMO

VDD

IBIAS

PCAS

VIP

VIP

VIN

VIN

NTAIL

PBCMO

OP1 ON1

NBCMO

NBCMO

VDD

OP1 ON1

VON VOP

VIN

N2TAIL

VIP

N2TAIL

CMFB

Gain Path

NBCMO

(a) circuit schematic

(b) manual layout (c) layout from MAGI-
CAL

Fig. 7. Inverter-based OTA circuit schematic, manual layout, and layout result
from MAGICAL.

designs with both analog and digital parts. Currently MAGI-
CAL is focusing on the component-level analog circuit blocks
such as OTAs and comparators. Although those circuits are
usually among the most representative and crucial parts of the
system, system-level hierarchical layout flow is still essential
for the target of fully-automating AMS layout generation. To
optimize the layout in the system level, floorplanning and
system interconnection synthesis algorithms will also be the
future development directions of MAGICAL.

IX. CONCLUSION

In this paper, we present MAGICAL, an open-source fully
automated end-to-end analog IC layout system from circuit
netlists to GDSII layouts. Human and machine intelligence are
strategically incorporated into MAGICAL by pattern match-
ing and deep learning techniques. The circuit performances
of the layouts completed by MAGICAL are close to those
handcrafted by experienced designers, while the design cy-
cle is shortened substantially. Future work includes further
improvements on circuit performance-aware and system-level
layout optimization.



ACKNOWLEDGEMENT

This work is supported in part by the NSF under Grant No.
1704758, and the DARPA ERI IDEA program.

REFERENCES

[1] J. Rijmenants, J. B. Litsios, T. R. Schwarz, and M. G. Degrauwe, “Ilac:
An automated layout tool for analog cmos circuits,” IEEE Journal Solid-
State Circuits, vol. 24, no. 2, pp. 417–425, 1989.

[2] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“Koan/anagram ii: New tools for device-level analog placement and
routing,” IEEE Journal Solid-State Circuits, vol. 26, no. 3, pp. 330–
342, 1991.

[3] K. Lampaert, G. Gielen, and W. M. Sansen, “A performance-driven
placement tool for analog integrated circuits,” IEEE Journal Solid-State
Circuits, vol. 30, no. 7, pp. 773–780, 1995.

[4] N. Lourenço, M. Vianello, J. Guilherme, and N. Horta, “Laygen-
automatic layout generation of analog ics from hierarchical template
descriptions,” in 2006 Ph. D. Research in Microelectronics and Elec-
tronics. IEEE, 2006, pp. 213–216.

[5] R. Martins, N. Lourenco, and N. Horta, “Laygen ii-automatic layout
generation of analog integrated circuits,” IEEE TCAD, vol. 32, no. 11,
pp. 1641–1654, 2013.

[6] K. Lampaert, G. Gielen, and W. M. Sansen, Analog layout generation
for performance and manufacturability. Springer Science & Business
Media, 2013, vol. 501.

[7] M. Strasser, M. Eick, H. Gräb, U. Schlichtmann, and F. M. Johannes,
“Deterministic analog circuit placement using hierarchically bounded
enumeration and enhanced shape functions,” in Proc. ICCAD, 2008, pp.
306–313.

[8] P.-H. Lin, Y.-W. Chang, and S.-C. Lin, “Analog placement based on
symmetry-island formulation,” IEEE TCAD, vol. 28, no. 6, pp. 791–
804, 2009.

[9] Q. Ma, L. Xiao, Y.-C. Tam, and E. F. Young, “Simultaneous handling of
symmetry, common centroid, and general placement constraints,” IEEE
TCAD, vol. 30, no. 1, pp. 85–95, 2011.

[10] M. P.-H. Lin, Y.-T. He, V.-H. Hsiao, R.-G. Chang, and S.-Y. Lee,
“Common-centroid capacitor layout generation considering device
matching and parasitic minimization,” IEEE TCAD, vol. 32, no. 7, pp.
991–1002, 2013.

[11] B. Xu, S. Li, X. Xu, N. Sun, and D. Z. Pan, “Hierarchical and
analytical placement techniques for high-performance analog circuits,”
in Proc. ISPD, 2017, pp. 55–62.

[12] B. Xu, B. Basaran, M. Su, and D. Z. Pan, “Analog placement constraint
extraction and exploration with the application to layout retargeting,” in
Proc. ISPD, 2018, pp. 98–105.

[13] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I.-P. Wu, and Y.-W. Chang, “Layout-
dependent effects-aware analytical analog placement,” IEEE TCAD,
vol. 35, no. 8, pp. 1243–1254, 2016.

[14] M. M. Ozdal and R. F. Hentschke, “An algorithmic study of exact route
matching for integrated circuits,” IEEE TCAD, vol. 30, no. 12, pp. 1842–
1855, 2011.

[15] ——, “Algorithms for maze routing with exact matching constraints,”
IEEE TCAD, vol. 33, no. 1, pp. 101–112, 2014.

[16] R. Martins, N. Loureno, A. Canelas, and N. Horta, “Electromigration-
aware and ir-drop avoidance routing in analog multiport terminal struc-
tures,” in Proc. DATE, March 2014, pp. 1–6.

[17] Q. Gao, Y. Shen, Y. Cai, and H. Yao, “Analog circuit shielding routing
algorithm based on net classification,” in Proc. ISLPED, Aug 2010, pp.
123–128.

[18] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New
York, NY, USA: McGraw-Hill, Inc., 2001.

[19] H. Ou, K. Tseng, J. Liu, I. Wu, and Y. Chang, “Layout-dependent
effects-aware analytical analog placement,” IEEE TCAD, vol. 35, no. 8,
pp. 1243–1254, Aug 2016.

[20] M. Eick, M. Strasser, K. Lu, U. Schlichtmann, and H. E. Graeb,
“Comprehensive generation of hierarchical placement rules for analog
integrated circuits,” IEEE TCAD, vol. 30, no. 2, pp. 180–193, Feb 2011.

[21] T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method
for cmos and bipolar analog integrated circuit synthesis,” IEEE TCAD,
vol. 27, no. 12, pp. 2209–2222, Dec 2008.

[22] Qinsheng Hao, Sheqin Dong, Song Chen, Xianlong Hong, Yi Su, and
Zhiyi Qu, “Constraints generation for analog circuits layout,” in 2004
International Conference on Communications, Circuits and Systems,
vol. 2, June 2004, pp. 1339–1343 Vol.2.

[23] P. Wu, M. P. Lin, and T. Ho, “Analog layout synthesis with knowl-
edge mining,” in European Conference on Circuit Theory and Design
(ECCTD), Aug 2015, pp. 1–4.

[24] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z.
Pan, “Device layer-aware analytical placement for analog circuits,” in
Proc. ISPD, 2019, pp. 19–26.

[25] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“Ntuplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints,” IEEE TCAD, vol. 27, no. 7,
pp. 1228–1240, 2008.

[26] S. Kuwabara, Y. Kohira, and Y. Takashima, “An effective overlap
removable objective for analytical placement,” IEICE transactions on
fundamentals of electronics, communications and computer sciences,
vol. 96, no. 6, pp. 1348–1356, 2013.

[27] W. Naylor, “Non-linear optimization system and method for wire length
and delay optimization for an automatic electric circuit placer,” US
Patent No. 6301693, 2001.

[28] J. Doenhardt and T. Lengauer, “Algorithmic aspects of one-dimensional
layout compaction,” IEEE TCAD, vol. 6, no. 5, pp. 863–878, 1987.

[29] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan,
“Wellgan: Generative-adversarial-network-guided well generation for
analog/mixed-signal circuit layout,” in Proc. DAC, 2019, p. 66.

[30] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun, “Practical placement
and routing techniques for analog circuit designs,” in Proc. ICCAD, Nov
2010, pp. 675–679.

[31] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“Geniusroute: A new analog routing paradigm using generative neural
network guidance,” in Proc. ICCAD, 2019.

[32] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Essential building
blocks for creating an open-source eda project,” in Proc. DAC, 2019.

[33] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an open-source digital
flow: First learnings from the openroad project,” in Proc. DAC, 2019,
pp. 76:1–76:4.

[34] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns,
R. Harjani, J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “Align: Open-
source analog layout automation from the ground up,” in Proc. DAC,
2019, pp. 77:1–77:4.

[35] “RAIL12,” https://github.com/uwidea/rail12, accessed: 2019-8-1.
[36] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: An initial detailed

router for advanced vlsi technologies,” in Proc. ICCAD, 2018, pp. 1–8.
[37] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Y. Young,

“Detailed routing by sparse grid graph and minimum-area-captured path
search,” in Proc. ASPDAC, 2019, pp. 754–760.

[38] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-taskflow:
Fast task-based parallel programming using modern c++,” in Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2019.

[39] “Sanitizer,” https://github.com/USCPOSH/Sanitizer, accessed: 2019-8-
1.

[40] X. Tang, L. Chen, J. Song, and N. Sun, “A 1.5fj/conv-step 10b 100ks/s
sar adc with gain-boosted dynamic comparator,” in Proc. ASSCC, Nov
2017, pp. 229–232.

[41] J. Liu, S. Li, W. Guo, G. Wen, and N. Sun, “A 0.029mm2 17-fj/conv.-step
ct δσ adc with 2nd-order noise-shaping sar quantizer,” in Proc. VLSI,
June 2018, pp. 201–202.

[42] “MAGICAL-CIRCUITS,” https://github.com/magical-eda/MAGICAL-
CIRCUITS, accessed: 2019-8-1.

[43] M. Hassanpourghadi, P. K. Sharma, and M. S. Chen, “A 6-b, 800-ms/s,
3.62-mw nyquist rate ac-coupled vco-based adc in 65-nm cmos,” IEEE
TCAS I, vol. 64, no. 6, pp. 1354–1367, June 2017.

[44] “AMPSE,” https://github.com/USCPOSH/AMPSE, accessed: 2019-8-1.
[45] A. Wang, C. Chen, and C. R. Shi, “A 9-bit resistor-based all-digital

temperature sensor with a sar-quantization embedded differential low-
pass filter in 65nm cmos consuming 57pj with a 2.5 µs conversion time,”
in Proc. CICC, 2019.

[46] “UW-IDEA AnalogTestCases,” https://github.com/uwidea/UW-IDEA
AnalogTestCases, accessed: 2019-8-1.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     7
     8
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



